

Handbook of Modules

Master Program Materials Science

Faculty of Mathematics, Natural Sciences, and Materials Engineering

Examination regulations as of 20.11.2013

Index by Groups of Modules

1) 1a Basics of Materials Science I

PHM-0144: Materials Physics (6 ECTS/LP, Wahlpflicht)	. 6
PHM-0110: Materials Chemistry (6 ECTS/LP, Wahlpflicht)	8

2) 1b Basics of Materials Science II

PHM-0117: Surfaces and Interfaces (6 ECTS/LP, Wahlpflicht)	. 10
PHM-0053: Chemical Physics I (6 ECTS/LP, Wahlpflicht)	.12

3) 2 Methods in Materials Science

PHM-0171: Method Course: Coordination Materials (8 ECTS/LP, Wahlpflicht) *14
PHM-0147: Method Course: Electron Microscopy (8 ECTS/LP, Wahlpflicht) *
PHM-0146: Method Course: Electronics for Physicists and Materials Scientists (8 ECTS/LP, Wahlpflicht) *
PHM-0172: Method Course: Functional Silicate-analogous Materials (8 ECTS/LP, Wahlpflicht) *21
PHM-0148: Method Course: Optical Properties of Solids (8 ECTS/LP, Wahlpflicht) *
PHM-0149: Method Course: Methods in Biophysics (8 ECTS/LP, Wahlpflicht)25
PHM-0151: Method Course: Porous Materials - Synthesis and Characterization (8 ECTS/LP, Wahlpflicht)
PHM-0221: Method Course: X-ray Diffraction Techniques (8 ECTS/LP, Wahlpflicht)29
PHM-0235: Method Course: 2D Materials (8 ECTS/LP, Wahlpflicht)31
PHM-0153: Method Course: Magnetic and Superconducting Materials (8 ECTS/LP, Wahlpflicht) *
PHM-0154: Method Course: Modern Solid State NMR Spectroscopy (8 ECTS/LP, Wahlpflicht)
PHM-0206: Method Course: Infrared Microspectroscopy under Pressure (8 ECTS/LP, Wahlpflicht) *
PHM-0216: Method Course: Thermal Analysis (8 ECTS/LP, Wahlpflicht)
PHM-0224: Method Course: Theoretical Concepts and Simulation (8 ECTS/LP, Wahlpflicht)40
PHM-0223: Method Course: Tools for Scientific Computing (8 ECTS/LP, Wahlpflicht)42
PHM-0150: Method Course: Spectroscopy on Condensed Matter (8 ECTS/LP, Wahlpflicht) *

4) 3a Conducting and Presenting Scientific Work - Seminar

PHM-0158: Introduction to Materials (= Seminar) (4 ECTS/LP, Pflicht)......46

5) 3b Conducting and Presenting Scientific Work - Laboratory Project

6) 4 Materials Science - Major Topic

a) Physics of Materials

PHM-0051: Biophysics and Biomaterials (6 ECTS/LP, Wahlpflicht) *	. 48
PHM-0160: Dielectric and Optical Materials (6 ECTS/LP, Wahlpflicht) *	50
PHM-0059: Magnetism (6 ECTS/LP, Wahlpflicht) *	52
PHM-0048: Physics and Technology of Semiconductor Devices (6 ECTS/LP, Wahlpflicht)	54
PHM-0049: Nanostructures / Nanophysics (6 ECTS/LP, Wahlpflicht)	.56
PHM-0203: Physics of Cells (6 ECTS/LP, Wahlpflicht)	.58

b) Chemistry of Materials

PHM-0054: Chemical Physics II (6 ECTS/LP, Wahlpflicht) *	60
PHM-0161: Coordination Materials (6 ECTS/LP, Wahlpflicht) *	. 62
PHM-0113: Advanced Solid State Materials (6 ECTS/LP, Wahlpflicht) *	. 64
PHM-0217: Advanced X-ray and Neutron Diffraction Techniques (6 ECTS/LP, Wahlpflicht) *	.66
PHM-0114: Porous Functional Materials (6 ECTS/LP, Wahlpflicht)	.68
PHM-0218: Novel Methods in Solid State NMR Spectroscopy (6 ECTS/LP, Wahlpflicht) *	70
PHM-0167: Oxidation and Corrosion (6 ECTS/LP, Wahlpflicht)	.71

c) Engineering of Materials

PHM-0164: Characterization of Composite Materials (6 ECTS/LP, Wahlpflicht) *	. 73
PHM-0163: Fiber Reinforced Composites: Processing and Materials Properties (6 ECTS/LP, Wahlpflicht)	.75
MRM-0052: Functional Polymers (6 ECTS/LP, Wahlpflicht) *	.77
PHM-0122: Non-Destructive Testing (6 ECTS/LP, Wahlpflicht)	.79
PHM-0168: Modern Metallic Materials (6 ECTS/LP, Wahlpflicht) *	.81
PHM-0196: Surfaces and Interfaces II: Joining processes (6 ECTS/LP, Wahlpflicht) *	.83

7) 5 Materials Science Elective Topic (PO13)

PHM-0166: Carbon-based functional Materials (Carboterials) (6 ECTS/LP, Wahlpflicht)......85

PHM-0174: Theoretical Concepts and Simulation (6 ECTS/LP, Wahlpflicht)	87
PHM-0058: Organic Semiconductors (6 ECTS/LP, Wahlpflicht) *	89
PHM-0066: Superconductivity (6 ECTS/LP, Wahlpflicht)	91
PHM-0060: Low Temperature Physics (6 ECTS/LP, Wahlpflicht)	93
PHM-0114: Porous Functional Materials (6 ECTS/LP, Wahlpflicht)	95
PHM-0068: Spintronics (6 ECTS/LP, Wahlpflicht)	97
PHM-0057: Physics of Thin Films (6 ECTS/LP, Wahlpflicht)	99
PHM-0056: Ion-Solid Interaction (6 ECTS/LP, Wahlpflicht) *	. 101
PHM-0069: Applied Magnetic Materials and Methods (6 ECTS/LP, Wahlpflicht)	.103
PHM-0052: Solid State Spectroscopy with Synchrotron Radiation and Neutrons (6 ECTS/LP, Wahlpflicht) *	. 105
PHM-0051: Biophysics and Biomaterials (6 ECTS/LP, Wahlpflicht) *	. 107
PHM-0160: Dielectric and Optical Materials (6 ECTS/LP, Wahlpflicht) *	109
PHM-0059: Magnetism (6 ECTS/LP, Wahlpflicht) *	. 111
PHM-0048: Physics and Technology of Semiconductor Devices (6 ECTS/LP, Wahlpflicht)	. 113
PHM-0049: Nanostructures / Nanophysics (6 ECTS/LP, Wahlpflicht)	.115
PHM-0054: Chemical Physics II (6 ECTS/LP, Wahlpflicht) *	. 117
PHM-0161: Coordination Materials (6 ECTS/LP, Wahlpflicht) *	. 119
PHM-0113: Advanced Solid State Materials (6 ECTS/LP, Wahlpflicht) *	. 121
PHM-0218: Novel Methods in Solid State NMR Spectroscopy (6 ECTS/LP, Wahlpflicht) *	123
PHM-0167: Oxidation and Corrosion (6 ECTS/LP, Wahlpflicht)	.124
PHM-0164: Characterization of Composite Materials (6 ECTS/LP, Wahlpflicht) *	. 126
PHM-0163: Fiber Reinforced Composites: Processing and Materials Properties (6 ECTS/LP, Wahlpflicht)	.128
PHM-0165: Introduction to Mechanical Engineering (6 ECTS/LP, Wahlpflicht)	130
MRM-0052: Functional Polymers (6 ECTS/LP, Wahlpflicht) *	.131
PHM-0168: Modern Metallic Materials (6 ECTS/LP, Wahlpflicht) *	. 133
PHM-0196: Surfaces and Interfaces II: Joining processes (6 ECTS/LP, Wahlpflicht) *	.135
PHM-0122: Non-Destructive Testing (6 ECTS/LP, Wahlpflicht)	. 137
PHM-0203: Physics of Cells (6 ECTS/LP, Wahlpflicht)	.139
PHM-0217: Advanced X-ray and Neutron Diffraction Techniques (6 ECTS/LP, Wahlpflicht) *	.141

PHM-0146: Method Course: Electronics for Physicists and Materials Scientists (8 ECTS/LP, Wahlpflicht) *
PHM-0147: Method Course: Electron Microscopy (8 ECTS/LP, Wahlpflicht) *
PHM-0148: Method Course: Optical Properties of Solids (8 ECTS/LP, Wahlpflicht) * 148
PHM-0149: Method Course: Methods in Biophysics (8 ECTS/LP, Wahlpflicht) 150
PHM-0151: Method Course: Porous Materials - Synthesis and Characterization (8 ECTS/LP, Wahlpflicht)
PHM-0153: Method Course: Magnetic and Superconducting Materials (8 ECTS/LP, Wahlpflicht) *
PHM-0154: Method Course: Modern Solid State NMR Spectroscopy (8 ECTS/LP, Wahlpflicht) 156
PHM-0171: Method Course: Coordination Materials (8 ECTS/LP, Wahlpflicht) *158
PHM-0172: Method Course: Functional Silicate-analogous Materials (8 ECTS/LP, Wahlpflicht) *160
PHM-0206: Method Course: Infrared Microspectroscopy under Pressure (8 ECTS/LP, Wahlpflicht) *
PHM-0216: Method Course: Thermal Analysis (8 ECTS/LP, Wahlpflicht) 164
PHM-0221: Method Course: X-ray Diffraction Techniques (8 ECTS/LP, Wahlpflicht)166
PHM-0234: 2D Materials (6 ECTS/LP, Wahlpflicht)168
PHM-0235: Method Course: 2D Materials (8 ECTS/LP, Wahlpflicht)170
PHM-0228: Symmetry concepts and their applications in solid state physics and materials science (6 ECTS/LP, Wahlpflicht) *
PHM-0223: Method Course: Tools for Scientific Computing (8 ECTS/LP, Wahlpflicht)173
PHM-0224: Method Course: Theoretical Concepts and Simulation (8 ECTS/LP, Wahlpflicht)175
PHM-0225: Analog Electronics for Physicists and Materials Scientists (6 ECTS/LP, Wahlpflicht)177
PHM-0226: Digital Electronics for Physicists and Materials Scientists (6 ECTS/LP, Wahlpflicht) * 179
PHM-0150: Method Course: Spectroscopy on Condensed Matter (8 ECTS/LP, Wahlpflicht) *

8) 6 Finals

PHM-0169: Masterthesis (26 ECTS/LP, Pflicht)	183
PHM-0170: Colloquium (4 ECTS/LP, Pflicht)	184

Module PHM-0144: Materials Ph Materials Physics	hysics	6 ECTS/LP
Version 1.1.0 (since WS15/16) Person responsible for module: apl. F	Prof. Dr. Helmut Karl	
Contents: • Electrons in solids • Phonons • Properties of metals, semicond • Application in optical, electronic • Dielectric solids, optical propert	c, and optoelectronic devices	
 structure, charge carrier statisti are capable to apply derived ap basic characteristics of semicor have the competence to apply of solids and to describe their fit understand size effects on mate Integrated acquirement of soft st thinking. 	rms and concepts of solid state physics cs, phonons, doping and optical proper oproximations as the effective mass or t inductor materials, these concepts for the description of ele unctionalities,	he electron-hole concept to describe ectric, electro-optic and thermal properties
Remarks: compulsory module		
Workload: Total: 180 h 120 h studying of course content usir 60 h lecture and exercise course (atte	•••••••••••••••••••••••••••••••••••••••	
Conditions: basic knowledge of solid state physic	s	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Materials Phys Mode of Instruction: lecture Language: English Contact Hours: 3	ics	
Learning Outcome: see module description		

Contents:

- · Electrons in solids: Free electron gas, band structure, effective mass
- · Lattice dynamics: Phonons, phonon dispersion, acoustic and optical phonons
- · Properties of metals: Electrical conductivity, Fermi surfaces, thermal properties
- · Properties of semiconductors: Pure, intrinsic semiconductors, equilibrium conditions, doping
- Properties of dielectric materials: Propagation of electromagnetic waves, frequency dependent optical properties, polarization effects.
- Application in devices: Heterostructures, Schottky contact, pn-junction, solar cell, light emission and technological aspects

Literature:

- Hummel R. E. : Electronic Properties of Materials Springer 2001 (UP1000 H925)
- Burns G.: Solid State Physics Academic Press 1990 (UP1000 B967)
- Ashcroft N. W., Mermin N.D.: Solid State Physics (UP1000 A 824)
- Kittel C. : Introduction to Solid State Physics (UP1000 K 62)

Part of the Module: Materials Physics (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see module description

Examination

Materials Physics

written exam / length of examination: 90 minutes

Examination Prerequisites:

Materials Physics

Module PHM-0110: Materials Ch	emistry	6 ECTS/LP
Materials Chemistry	lonnotry	
Version 1.0.0 (since WS09/10)]
Person responsible for module: Prof.	Dr. Henning Höppe	
Contents:		
Revision of basic chemical cond	cepts	
 Solid state chemical aspects of 	•	
• Thermoelectrics		
 Battery electrode materia 	ls, ionic conductors	
 Hydrogen storage materia 		
 Data storage materials 		
 Phosphors and pigments 		
 Ferroelectrics and Piezoe 	lectrics	
 Heterogeneous catalysis 		
 nanoscale materials 		
Learning Outcomes / Competences		
The students will		
• be able to apply basic chamical	concepts on materials science problems	
	ructure-property relations of materials col	
_	ies, chemical bonding in solids and chem	
classes,		ical properties of selected compound
,	roaches towards relevant materials,	
	re research using online data bases.	
Workload:		
Total: 180 h		
60 h lecture and exercise course (atte	-	
20 h studying of course content using		
20 h studying of course content using	gh exercises / case studies (self-study)	
		1
Conditions:		
The lecture course is based on the Ba		
Chemie I and Chemie III (solid state c	chemistry).	
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module:
	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
	lotny	
Part of the Module: Materials Chem Mode of Instruction: lecture	iisu y	
Language: English Contact Hours: 3		
Learning Outcome:		
see description of module		

Contents:

see description of module

Literature:

- A. R. West, Solid State Chemistry, John Wiley, Chichester.
- U. Müller, Inorganic Structural Chemistry, Wiley-VCH.
- R. Dronskowski, Computational Chemistry of Solid State Materials, Wiley VCH.
- Textbooks on Basics of Inorganic Chemistry such as J. E. Huheey, E. Keiter, R. Keiter, Anorganische Chemie, de Gruyter, or equivalents.
- Moreover, selected reviews and journal articles will be cited on the slides.

Part of the Module: Materials Chemistry (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see description of module

Contents:

see description of module

Literature:

see associated lecture

Examination

Materials Chemistry

written exam / length of examination: 90 minutes

Examination Prerequisites:

Materials Chemistry

Module PHM-0117: Surfaces an Surfaces and Interfaces	d Interfaces	6 ECTS/LP
Version 1.0.0 (since WS09/10) Person responsible for module: Prof.	Dr. Siegfried Horn	
Contents: Introduction		
The importance of surfaces and	d interfaces	
Some basic facts from solid state phy	sics	
 Crystal lattice and reciprocal lat Electronic structure of solids Lattice dynamics 	tice	
Physics at surfaces and interfaces		
 Structure of ideal and real surfa Relaxation and reconstruction Transport (diffusion, electronic) Thermodynamics of interfaces Electronic structure of surfaces Chemical reactions on solid sta Interface dominated materials (on interfaces te surfaces (catalysis)	
Methods to study chemical composition	on and electronic structure, application	examples
 Scanning electron microscopy Scanning tunneling and scanning Auger – electron – spectroscopy Photo electron spectroscopy 		
Learning Outcomes / Competences The students:	5:	
surfaces and interfaces,acquire the skill to solve problem interface physics,	ms of fundamental research and applie certain problems autonomously based	
Workload: Total: 180 h 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throu 60 h lecture and exercise course (atte	provided materials (self-study) gh exercises / case studies (self-study))
Conditions: The module "Physics IV - Solid State Materials Science program should be		
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Surfaces and Interfaces

Mode of Instruction: lecture

Language: English

Frequency: annually

Contact Hours: 3

Learning Outcome:

see module description

Contents:

see module description

Literature:

- Ertl, Küppers: Low Energy Electrons and Surface Chemistry (VCH)
- Lüth: Surfaces and Interfaces of Solids (Springer)
- Zangwill: Physics at Surfaces (Cambridge)
- Feldmann, Mayer: Fundamentals of Surface and thin Film Analysis (North Holland)
- Henzler, Göpel: Oberflächenphysik des Festkörpers (Teubner)
- Briggs, Seah: Practical Surface Analysis I und II (Wiley)

Part of the Module: Surfaces and Interfaces (Tutorial)

Mode of Instruction: exercise course

Language: English

Frequency: annually

Contact Hours: 1

Examination

Surfaces and Interfaces

written exam / length of examination: 90 minutes

Examination Prerequisites:

Surfaces and Interfaces

Module PHM-0053: Chemical P	hysics I	6 ECTS/LP
Chemical Physics I		
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof.	Dr. Wolfgang Scherer	
Contents:		
Basics of quantum chemical m		
Molecular symmetry and group The electronical structure of the	-	
The electronical structure of tra	•	
Learning Outcomes / Competence The students:	S:	
 know the basics of the extende 	d-Hückel-method and the density function	nal theory,
 know the basics of group theor 	у,	
	e gained through consideration of symmetry	etry from vibration-, NMR-, and UV/VIS-
spectroscopy, andare able to interpret and predic	t the basical geometric, electronical and	magnetical properties of transition metal
complexes.		
-	skills: ability to specialize in a scientific to	ppic and to apply the acquired knowledge
for solving scientific problems.		
Remarks:		
It is possible for students to do EHM	calculations autonomously and analyze	electronical structures of molecules on a
computer cluster within the scope of	the tutorial.	
Workload:		
Total: 180 h		
20 h studying of course content using		
	igh exercises / case studies (self-study)	
20 h studying of course content using		
60 h lecture and exercise course (atte	endance)	-
Conditions:		
It is recommended to complete the ex		
and FP17 (Raman-spectroscopy) of t Fortgeschrittenenpraktikum".	ne module "Physikalisches	
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module:
	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Chemical Phys	ics I	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		
Contact Hours: 3 Learning Outcome:		

Contents:

- Basics of quantum chemical methods
 - Extended Hueckel method (EHM)
 - · Modern quantum chemical methods of chemical physics
 - Application: exemplary calculations and interpretation of simple electronical structures
- Molecular symmetry and group theory
 - Symmetry operations and matrix transformations
 - Point groups
 - Reducible and irreducible representations
 - Character tables
 - Application: infrared- and raman-spectroscopy, NMR-spectroscopy
- · The electronical structure of transition metal complexes
 - Ligand field theory and angular-overlap model (AOM)
 - The physical basics of the spectrochemical series
 - Molecular orbital theory of transition metal complexes
 - Application: UV/VIS-spectroscopy, molecular magnetism

Literature:

- J. Reinhold, Quantentheorie der Moleküle (Teubner)
- H.-H. Schmidtke, Quantenchemie (VCH)
- D. C. Harris und M. D. Bertolucci, Symmetry and Spectroscopy (Dover Publications)
- D. M. Bishop, Group Theory and Chemistry (Dover Publications)
- J. K. Burdett, Chemical Bonds: A Dialog (Wiley)
- F. A. Kettle, Physical Inorganic Chemistry (Oxford University Press)
- A. Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian Inc. Pittsburg, PA)

Part of the Module: Chemical Physics I (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Chemical Physics I

written exam / length of examination: 90 minutes

Examination Prerequisites:

Chemical Physics I

Module PHM-0171: Method Cour Method Course: Coordination Material		8 ECTS/LP
Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof. I	Dr. Dirk Volkmer	
Dr. Hana Bunzen		
Contents:		
diffraction) 3. Material composition and stabilit		s spectroscopy, IR spectroscopy, X-ray rrying materials)
Learning Outcomes / Competences		
The students will learn how to:		
synthesis conditions (Schlenk techaracterize coordination compo	chnique), ounds by selected analytical techniques naterials based on organic / inorganic	
Remarks: ELECTIVE COMPULSORY MODULE		
Total: 240 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 120 h lecture and exercise course (atte	h exercises / case studies (self-study) literarture (self-study)	
Conditions:		Credit Requirements: written report (protocols)
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4 Assigned Courses:		ourse)
Method Course: Coordination Mater	ials (Practical Course) (internship)	
Part of the Module: Method Course: Mode of Instruction: seminar	Coordination Materials (Seminar)	

Language: English

Contact Hours: 2

Literature:

- Chemical databases
- Primary literature

Assigned Courses:

Method Course: Coordination Materials (Seminar) (seminar)

Examination

Method Course: Coordination Materials (Seminar) seminar

Examination Prerequisites:

Method Course: Coordination Materials (Seminar)

Module PHM-0147: Method Cour Method Course: Electron Microscopy	se: Electron Microscopy	8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. I	Dr. Ferdinand Haider	
Contents:		
 Scanning electron microscopy (\$ Transmission electron microscopy) 	-	
Learning Outcomes / Competences The students:	-	
lectures to teach the theoretical		
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h 90 h lecture and exercise course (atter 150 h studying of course content using		
Conditions: Recommended: knowledge of solid-sta	ate physics, reciprocal lattice	Credit Requirements: regular participation, oral presentation (10 min), written report (one report per group)
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English Contact Hours: 2	Electron Microscopy	

Contents:

SEM:

- 1. Layout of Electron Microscopes and Electron Optical Components
- 2. Electron Solid Interactions
- 3. Contrast Formation in Scanning Electron Microscopy (SEM)
- 4. SE/BSE contrast
- 5. Electron Back Scattering Diffraction (EBSD)
- 6. Analytical techniques
- 7. Special Applications of SEM

TEM:

- 1. TEM specimen preparation techniques
- 2. Components of a TEM, principle lens design, lens aberrations
- 3. Electron diffraction: fundamentals
- 4. Contrast formation at bright field, dark field, weak beam dark field, and many beam conditions, "chemical" imaging
- 5. Bright field, dark field, weak beam dark field imaging of dislocations
- 6. Kinematical theory of electron wave propagation in crystals
- 7. Howie Whelan equations, contrast of defects
- 8. High resolution TEM, lattice imaging of crystals
- 9. Advanced diffraction techniques: Kikuchi patterns, HOLZ lines and Convergent Beam Diffraction (CBED)
- 10. Image simulation
- 11. Analytical TEM: Electron energy loss spectroscopy & energy filtered TEM

Literature:

- D.B.Williams and C.B.Carter, Transmission Electron Microscopy, Plenum Press, New York/London, 1996
- M.A. Hirsch, A. Howie, R. Nicholson, D.W. Pashley, M.J. Whelan, Electron microscopy of thin crystals, Krieger Publishing Company, Malabar (Florida), 1977
- L. Reimer, Transmission electron microscopy, Springer Verlag, Berlin/Heidelberg/New York, 1984
- P.J. Goodhew, Thin foil preparation for electron microscopy, Elsevier, Amsterdam, 1985
- P.R. Buseck, J.M. Cowley, L. Eyring, High-resolution transmission electron microscopy, Oxford University Press, 1988
- E. Hornbogen, B. Skrotzki, Werkstoff-Mikroskopie, Springer Verlag, Berlin/Heidelberg/New York, 1995
- K. Wetzig, In situ scanning electron microscopy in materials research, Akad.-Verl., 1995
- J. I. goldstein, Scanning electron microscopy and x-ray microanalysis, Plenum Press, 1992
- L. Reimer, Scanning electron microscopy, Springer Verlag, 1985
- S. L. Flegler, J. W. Heckman, K. L. Klomparens, Elektronenmikroskopie, Spektrum, Akad. Verl., 1995

Assigned Courses:

Method Course: Electron Microscopy (lecture)

Part of the Module: Method Course: Electron Microscopy (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Electron Microscopy (Practical Course) (internship)

Examination Method Course: Electron Microscopy report Examination Prerequisites: Method Course: Electron Microscopy

Method Course: Electronics for Physicists and Materials Scientists Version 1.0.0 (since SoSe15) Person responsible for module: Andreas Hörner Contents: 1. Basics in electronic and electrical engineering [4] 2. Quadrupole theory [2] 3. Analog technique, transistor and opamp circuits [5] 4. Boolean algebra and logic [4] 5. Digital electronics and calculation circuits [6] 6. Microprocessors and Networks [4] 7. Basics in Electronic [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, • have explicits in easy circuit design, measuring and control technology, analog and digital electronics, • have explicits in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions:	and Materials Scientists	Course: Electronics for Physicists	8 ECTS/LI
Person responsible for module: Andreas Hörner Contents: Basics in electronic and electrical engineering [4] Quadrupole theory [2] Analog technique, transistor and opamp circuits [5] ABoolean algebra and logic [4] Digital electronics and calculation circuits [6] Digital electronics and calculation circuits [6] Doperational amplifiers [8] Doperational amplifiers [8] Doperational amplifiers [8] Doperational amplifiers [8] Carcinal decorrection [8] Recorrection and phenomena of electronic and electrical engineering for the use in the laboratory, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Recormended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Method Course: Electronics for P	hysicists and Materials Scientists	
Contents: 1. Basics in electronic and electrical engineering [4] 2. Quadrupole theory [2] 3. Analog technique, transistor and opamp circuits [5] 4. Boolean algebra and logic [4] 5. Digital electronics and calculation circuits [6] 6. Microprocessors and Networks [4] 7. Basics in Electronic [8] 8. Implementation of transistors [8] 9. Operational amplifiers [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital electronics, • have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditi	Version 1.0.0 (since SoSe15)		
1. Basics in electronic and electrical engineering [4] 2. Quadrupole theory [2] 3. Analog technique, transistor and opamp circuits [5] 4. Boolean algebra and logic [4] 5. Digital electronics and calculation circuits [6] 6. Microprocessors and Networks [4] 7. Basics in Electronic [8] 8. Implementation of transistors [8] 9. Operational amplifiers [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Requency: each semester Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Person responsible for module: A	ndreas Hörner	
 2. Quadrupole theory [2] 3. Analog technique, transistor and opamp circuits [5] 4. Boolean algebra and logic [4] 5. Digital electronics and calculation circuits [6] 6. Microprocessors and Networks [4] 7. Basics in Electronic [8] 8. Implementation of transistors [8] 9. Operational amplifiers [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital electronics, • have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: mone Recommended Semester: from 1. semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program 	Contents:		
 Analog technique, transistor and opamp circuits [5] Boolean algebra and logic [4] Digital electronics and calculation circuits [6] Microprocessors and Networks [4] Basics in Electronic [8] Implementation of transistors [8] Operational amplifiers [8] Digital electronics [8] Practical circuit arrangement [8] Learning Outcomes / Competences: The students: know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have skylls in easy circuit design, measuring and control technology, analog and digital electronics, have skylls in easy circuit design or circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: mene Frequency: each semester Recommended Semester: mone Credit Requirements: written report (one per group) Frequency: each semester Repeat Exams Permitted: according to the examination regulations of the study program 	1. Basics in electronic and ele	ctrical engineering [4]	
 Boolean algebra and logic [4] Digital electronics and calculation circuits [6] Microprocessors and Networks [4] Basics in Electronic [8] Implementation of transistors [8] Operational amplifiers [8] Digital electronics [8] Practical circuit arrangement [8] Learning Outcomes / Competences: The students: know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h Ob hecture and exercise course (attendance) Ho h studying of course content using provided materials (self-study) Conditions: none Recommended Semester: from 1. semester[s] cording to the examination regulations of the study program 	2. Quadrupole theory [2]		
5. Digital electronics and calculation circuits [6] 6. Microprocessors and Networks [4] 7. Basics in Electronic [8] 8. Implementation of transistors [8] 9. Operational amplifiers [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital electronics, • have skills in easy circuit design, measuring and control technology, analog and digital electronics, • have sepertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	3. Analog technique, transisto	r and opamp circuits [5]	
6. Microprocessors and Networks [4] 7. Basics in Electronic [8] 8. Implementation of transistors [8] 9. Operational amplifiers [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital electronics, • have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: written report (one per group) Frequency: each semester Recommended Semester: Minimal Duration of the Module: 7 mone 1 semester[s]			
7. Basics in Electronic [8] 8. Implementation of transistors [8] 9. Operational amplifiers [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital electronics, • have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: written report (one per group) Frequency: each semester Recommended Semester: from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program 1 semester[s]	-		
8. Implementation of transistors [8] 9. Operational amplifiers [8] 9. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital electronics, • have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: written report (one per group) Frequency: each semester Recommended Semester: Minimal Duration of the Module: 7 according to the examination regulations of the study program 1 semester[s]		orks [4]	
 9. Operational amplifiers [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Frequency: each semester Recommended Semester: from 1. Credit Requirements: uritien report (one per group) Frequency: each semester Repeat Exams Permitted: according to the examination regulations of the study program			
10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital electronics, • have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: Credit Requirements: none from 1. Frequency: each semester Recommended Semester: from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: 7 according to the examination regulations of the study program regulations of the study program	•	rs [8]	
11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital electronics, • have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: mone none Credit Requirements: riom 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: 7 according to the examination regulations of the study program cording to the examination			
Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital electronics, • have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Frequency: each semester Repat Exams Permitted: 7 according to the examination 7 egulations of the study program	• • • •	of [0]	
The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital electronics, • have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program			
laboratory, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Frequency: each semester Repeat Exams Permitted: rom 1. Contact Hours: 7 Repeat Exams Permitted: regulations of the study program	Learning Outcomes / Competer The students:	nces:	
Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Frequency: each semester Recommended Semester: from 1. Contact Hours: 7 Repeat Exams Permitted: according to the examination regulations of the study program	have expertise in independent		
AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Credit Requirements: written report (one per group) Frequency: each semester Recommended Semester: from 1. Minimal Duration of the Module: 1 semester[s] Contact Hours: 7 Repeat Exams Permitted: according to the examination regulations of the study program 1			
Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Frequency: each semester Recommended Semester: from 1. Contact Hours: 7 Repeat Exams Permitted: according to the examination regulations of the study program	ELECTIVE COMPULSORY MOD	DULE	
100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Credit Requirements: written report (one per group) Frequency: each semester Recommended Semester: from 1. Minimal Duration of the Module: 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program Let the study program	Attendance in the Method Cours	e: Electronics for Physicists and Materi	-
140 h studying of course content using provided materials (self-study) Credit Requirements: written report (one per group) Conditions: written report (one per group) Frequency: each semester Recommended Semester: from 1. Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program	Attendance in the Method Cours AND lecture) excludes credit poin	e: Electronics for Physicists and Materi	-
Conditions: Credit Requirements: none written report (one per group) Frequency: each semester Recommended Semester: Minimal Duration of the Module: from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program	Attendance in the Method Cours AND lecture) excludes credit poin Workload:	e: Electronics for Physicists and Materi	-
none written report (one per group) Frequency: each semester Recommended Semester: from 1. Minimal Duration of the Module: 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program Image: Contact Hours in the study program	Attendance in the Method Cours AND lecture) excludes credit poin Workload: Total: 240 h	e: Electronics for Physicists and Materi nts for the lecture Electronics for Physici	-
Frequency: each semester Recommended Semester: from 1. Minimal Duration of the Module: 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program	Attendance in the Method Cours AND lecture) excludes credit poin Workload: Total: 240 h 100 h lecture and exercise course	e: Electronics for Physicists and Materi nts for the lecture Electronics for Physicists (attendance)	-
from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program	Attendance in the Method Cours AND lecture) excludes credit poin Workload: Total: 240 h 100 h lecture and exercise course 140 h studying of course content	e: Electronics for Physicists and Materi nts for the lecture Electronics for Physicists (attendance)	sts and Materials Scientists.
from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program	Attendance in the Method Cours AND lecture) excludes credit poin Workload: Total: 240 h 100 h lecture and exercise course 140 h studying of course content Conditions:	e: Electronics for Physicists and Materi nts for the lecture Electronics for Physicists (attendance)	sts and Materials Scientists.
Contact Hours: Repeat Exams Permitted: 7 according to the examination regulations of the study program	Attendance in the Method Cours AND lecture) excludes credit poin Workload: Total: 240 h 100 h lecture and exercise course 140 h studying of course content Conditions: none	e: Electronics for Physicists and Materi Ints for the lecture Electronics for Physicists (attendance) using provided materials (self-study)	sts and Materials Scientists. Credit Requirements: written report (one per group)
7 according to the examination regulations of the study program	Attendance in the Method Cours AND lecture) excludes credit poin Workload: Total: 240 h 100 h lecture and exercise course 140 h studying of course content Conditions: none	e: Electronics for Physicists and Materi Ints for the lecture Electronics for Physicists e (attendance) using provided materials (self-study) Recommended Semester:	Sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module:
regulations of the study program	Attendance in the Method Cours AND lecture) excludes credit poin Workload: Total: 240 h 100 h lecture and exercise course 140 h studying of course content Conditions: none Frequency: each semester	e: Electronics for Physicists and Materi Ints for the lecture Electronics for Physicists e (attendance) using provided materials (self-study) Recommended Semester: from 1.	Sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module:
	Attendance in the Method Cours AND lecture) excludes credit poin Workload: Total: 240 h 100 h lecture and exercise course 140 h studying of course content Conditions: none Frequency: each semester Contact Hours:	e: Electronics for Physicists and Materi Ints for the lecture Electronics for Physicists e (attendance) using provided materials (self-study) Recommended Semester: from 1. Repeat Exams Permitted:	Sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module:
Parts of the module	Attendance in the Method Cours AND lecture) excludes credit poin Workload: Total: 240 h 100 h lecture and exercise course 140 h studying of course content Conditions: none Frequency: each semester Contact Hours:	e: Electronics for Physicists and Materi Ints for the lecture Electronics for Physicists e (attendance) using provided materials (self-study) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module:
	Attendance in the Method Cours AND lecture) excludes credit poin Workload: Total: 240 h 100 h lecture and exercise course 140 h studying of course content Conditions: none Frequency: each semester Contact Hours: 7	e: Electronics for Physicists and Materi Ints for the lecture Electronics for Physicists e (attendance) using provided materials (self-study) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module:
	Attendance in the Method Cours AND lecture) excludes credit poin Workload: Total: 240 h 100 h lecture and exercise course 140 h studying of course content Conditions: none Frequency: each semester Contact Hours: 7 Parts of the Module	e: Electronics for Physicists and Materi Ints for the lecture Electronics for Physicists e (attendance) using provided materials (self-study) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module: 1 semester[s]

Contact Hours: 4

Literature:

- Paul Horowitz: The Art of Electronics (Cambridge University Press)
- National Instruments: MultiSim software package (available in lecture)

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (lecture)

Part of the Module: Method Course: Electronics for Physicists and Materials Scientists (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 3

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (Practical Course) (internship)

Examination

Method Course: Electronics for Physicists and Materials Scientists

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Method Course: Electronics for Physicists and Materials Scientists

Module PHM-0172: Method Cour Materials Method Course: Functional Silicate-an	se: Functional Silicate-analogous alogous Materials	8 ECTS/L
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D	or. Henning Höppe	1
Contents: Synthesis and characterization of funct	ional materials according to the topics:	
 Silicate-analogous compounds Luminescent materials / phospho Pigments Characterization methods: XRD, 	ors spectroscopy (luminescence, UV/vis, F	T-IR), thermal analysis
Learning Outcomes / Competences: The students will know how to:		
autoclave reactions, use of silica	aration techniques (e.g. solid state react ampoules), heres (e.g. reducing, inert conditions), s from single-crystal data,	ion, sol-gel reaction, precipitation,
Remarks: ELECTIVE COPULSORY MODULE		
Workload: Total: 240 h 120 h lecture and exercise course (atte 20 h studying of course content using p 20 h studying of course content using l 80 h studying of course content throug	provided materials (self-study) iterarture (self-study)	
Conditions: Recommended: attendance to the lected	ure "Advanced Solid State Materials"	Credit Requirements: written report (protocol)
Frequency: each semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module	1	1

Part of the Module: Method Course: Functional Silicate-analogous Materials (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 6

Learning Outcome:

The students will know how to:

- · develop functional materials based on silicate-analogous materials,
- apply classical and modern preparation techniques (e.g. solid state reaction, sol-gel reaction, precipitation, autoclave reactions, use of silica ampoules),
- work under non-ambient atmospheres (e.g. reducing, inert conditions),
- · solve and refine crystal structures from single-crystal data,
- · describe and classify these structures properly.

Contents:

Synthesis and characterization of functional materials according to the topics:

- 1. Silicate-analogous compounds
- 2. Luminescent materials / phosphors
- 3. Pigments
- 4. Characterization methods: XRD, spectroscopy (luminescence, UV/vis, FT-IR), thermal analysis

Assigned Courses:

Method Course: Functional Silicate-analogous Materials (Practical Course) (internship)

Examination

Method Course: Functional Silicate-analogous Materials

seminar

Examination Prerequisites:

Method Course: Functional Silicate-analogous Materials

Module PHM-0148: Method C Method Course: Optical Properties	ourse: Optical Properties of Solids of Solids	8 ECTS/LP
Version 1.2.0 (since SoSe15) Person responsible for module: Pro	of. Dr. Joachim Deisenhofer	
Contents: Electrodynamics of solids		
Maxwell equationsElectromagnetic wavesRefraction and interference,	Fresnel equations	
FTIR spectroscopy		
 Fourier transformation Michelson-Morley and Genze Sources and detectors 	el interferometer	
Terahertz Time Domain spectrosco	рру	
Generation of pulsed THz raGated detection, Austin swite		
Elementary excitations in solid mat	erials	
 Rotational-vibrational bands Infrared-active phonons Interband excitations Crystal-field excitations 		
Learning Outcomes / Competene The students:	ces:	
Remarks:		
Workload: Total: 240 h 30 h studying of course content us 90 h studying of course content thr 30 h studying of course content us 90 h lecture and exercise course (a	ough exercises / case studies (self-study) ing literarture (self-study)	
Conditions: Recommended: basic knowledge i electrodynamics and optics	n solid-state physics, basic knowledge in	Credit Requirements: written report
Frequency: each semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Optical Properties of Solids

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

Mark Fox, Optical Properties of Solids, Oxford Master Series

Eugene Hecht, Optics, Walter de Gruyter

Assigned Courses:

Method Course: Optical Properties of Solids (lecture)

Part of the Module: Method Course: Optical Properties of Solids (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Optical Properties of Solids (Practical Course) (internship)

Examination

Method Course: Optical Properties of Solids report

Examination Prerequisites:

Method Course: Optical Properties of Solids

Module PHM-0149: Method Cou Method Course: Methods in Biophysic		8 ECTS/L
Version 1.0.0 (since SoSe15)		
Person responsible for module: Dr. St	efan Thalhammer	
Contents:		
Unit radiation biophysics		
 Concepts in radiation protection 		
Low-dose irradiation biophysics		
 DNA repair dynamics of living control Confocal scanning laser microsometry 	•	
-	сору	
Unit microfluidic		
Microfluidic systems		
Accoustic driven microfluidics Coloulation of microfluidic problem		
Calculation of microfluidic proble		
Unit analysis		
Learning Outcomes / Competences The students:	:	
 learn skills in tissue culture and learn skills in fluorescence and learn skills to calculate fluidic pr learn skills to handle microfluidid 	oblems on small length scales,	ires,
Remarks: ELECTIVE COMPULSORY MODULE		
The course will partly take place at the	e Helmholtz Center Munich.	
Workload:		
Total: 240 h		
Conditions:		Credit Requirements:
Attendance of the lecture "Biophysics	and Biomaterials"	1 written lab report
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
6	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Method Course	: Methods in Biophysics	
Part of the Module: Method Course Mode of Instruction: lecture	: Methods in Biophysics	
	Methods in Biophysics	

Part of the Module: Method Course: Methods in Biophysics (Practical Course) Mode of Instruction: laboratory course Language: English Contact Hours: 4

Literature:

- T. Herrmann, Klinische Strahlenbiologie kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1
- J. Freyschmidt, Handbuch diagnostische Radiologie Strahlenphysik, Strah-lenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3
- S. Haeberle und R. Zengerle, Microfluidic platforms for lab-on-a-chip applica-tions, Lab-on-a-chip, 2007, 7, 1094-1110
- J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9
- Lecture notes

Examination

Method Course: Methods in Biophysics report

Examination Prerequisites:

Method Course: Methods in Biophysics

Module PHM-0151: Method Course: Porous Materials - Synthesis and Characterization Method Course: Porous Materials - Synthesis and Characterization		8 ECTS/LF
Version 1.0.0 (since SoSe15) Person responsible for module: Prof.	Dr. Dirk Volkmer	
Contents: Synthesis of porous functional materi Frameworks)	als (e.g. aerogels, mesoporous silica mat	erials, zeolites, Metal-Organic
Characterization methods		
 Structure and composition (XRI Thermal analysis (TGA) Adsorption and diffusion (BET, Catalytic properties (GC/MS, TI 	pore size distribution, pulse chemisorptio	n)
Learning Outcomes / Competences The students will learn how to	S:	
use modern solid state preparaemploy analytical methods ded	tion techniques (e.g. hydrothermal, solvo icated to porous materials.	thermal, microwave synthesis),
Remarks: ELECTIVE COMPULSORY MODULI	E	
Workload: Total: 240 h 120 h internship / practical course (at 80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using	gh exercises / case studies (self-study) l literarture (self-study)	
Conditions: Recommended: lecture Functional Porous Materials		Credit Requirements: written report (editing time 3 weeks) + written exam Please note that final grade of the
		Method Course consists of the maximum point score of of the exam and the grade of the report of the practical part which are weighted (40:60).
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination	

Parts of the Module

Part of the Module: Method Course: Porous Materials Synthesis and Characterization (Practical Course) Mode of Instruction: laboratory course Language: English

Contact Hours: 4

Examination

Method Course: Porous Materials Synthesis and Characterization

written exam / length of examination: 45 minutes

Examination Prerequisites:

Method Course: Porous Materials Synthesis and Characterization

Module PHM-0221: Method Cou Method Course: X-ray Diffraction Tec	Irse: X-ray Diffraction Techniques	8 ECTS/LP
Version 1.0.0 Person responsible for module: Prof. PD Dr. Georg Eickerling	Dr. Wolfgang Scherer	
Contents: Subjects of the practical training and of X-ray diffraction techniques:	the accompanying lecture are the theoret	ical basics and the practical application
Data collection and reduction techniq	ues	
Symmetry and space group determin	ation	
Structural refinements: • The Rietveld method • Difference Fourier synthesis Structure determination:		
Patterson methodDirect methods		
Interpretation of structural refinement	results	
Errors and Pitfalls: twinning and disor	der	
employing X-ray diffraction techhave the skill to perform under	guidance phase-analyses and X-ray struc s-on the structure-property relationships o	cture determinations
Workload: Total: 240 h 30 h studying of course content using 30 h studying of course content using 90 h studying of course content throu 90 h lecture and exercise course (atte	l literarture (self-study) gh exercises / case studies (self-study)	
Conditions: none		
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: X-ray Diffraction Techniques

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Part of the Module: Method Course: X-ray Diffraction Techniques (Practical Course)

Mode of Instruction: laboratory course Language: German

Contact Hours: 4

Examination

Method Course: X-ray Diffraction Techniques

written exam / length of examination: 90 minutes

Module PHM-0235: Method Cour Method Course: 2D Materials	se: 2D Materials	8 ECTS/LP
Version 1.0.1 (since SoSe18) Person responsible for module: Prof. D	Dr. Hubert J. Krenner	
Contents:		
 Fabrication of monolayers of 2D Characterization of the structural Modelling of selected physical pr 	l, optical and vibrational properties of 2	2D Materials
	tion of fabrication of selected monolay tion of basic characterization methods n methods	
Workload: Total: 240 h 90 h lecture and exercise course (atter 30 h studying of course content using J 30 h studying of course content using J 90 h studying of course content throug	provided materials (self-study) iterarture (self-study)	
Conditions: Basic knowledge of solid state physics	· · · · · ·	Credit Requirements: written report, editing time 3 weeks, max. 30 pages
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English Contact Hours: 2	2D Materials	
Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4		

Examination

Method Course: 2D Materials report Description: written report

Module PHM-0153: Method Courting Materials Method Course: Magnetic and Superc	rse: Magnetic and Superconduc-	8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. I	Dr. Philipp Gegenwart	
Contents: Methods of growth and characterization	n:	
Sample preparation (bulk materials ar	d thin films), e.g.,	
arcmeltingflux-growthsputtering and evaporation		
Sample characterization, e.g.,		
 X-ray diffraction electron microscopy, scanning t magnetic susceptibility, electrica specific heat 		
Learning Outcomes / Competences The students	:	
thin-film growth, X-ray diffractionare trained in planning and performlearn to evaluate and analyze the	n, magnetic susceptibility, dc-conductivi	problems in experimental solid state
Workload: Total: 240 h 90 h lecture and exercise course (atte 30 h studying of course content using 90 h studying of course content throug 30 h studying of course content using	provided materials (self-study) h exercises / case studies (self-study)	
Conditions: Recommended: basic knowledge in so mechanics	blid state physics and quantum	Credit Requirements: presentation and written report on the experiments (editing time 3 weeks, max. 30 pages)
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course Mode of Instruction: lecture Language: English	Magnetic and Superconducting Mat	erials

Contact Hours: 2

Assigned Courses:

Method Course: Magnetic and Superconducting Materials (lecture)

Part of the Module: Method Course: Magnetic and Superconducting Materials (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Magnetic and Superconducting Materials (Practical Course) (internship)

Examination

Method Course: Magnetic and Superconducting Materials

Examination Prerequisites:

Method Course: Magnetic and Superconducting Materials

Module PHM-0154: Method Cour Spectroscopy Method Course: Modern Solid State N		8 ECTS/LP
Version 2.0.0 (since SoSe17) Person responsible for module: Prof. [Dr. Leo van Wüllen	
Contents:		
Physical foundations of NMR spectros		
Internal interactions in NMR spectrosc	ору	
 Chemical shift interaction Dipole interaction and Quadrupolar interaction 		
Magic Angle Spinning techniques		
Modern applications of NMR in materia	als science	
		alysis and interpretation of acquired data
Learning Outcomes / Competences		
gain basic practical knowledge c	sical foundations of modern Solid-State of operating a solid-state NMR spectron erform, and analyze modern solid-state aterials.	neter,
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h 30 h studying of course content using 90 h studying of course content throug 30 h studying of course content using 90 h lecture and exercise course (atte	h exercises / case studies (self-study) provided materials (self-study)	
Conditions: The attendance of the lecture "NOVEL		Credit Requirements: Bestehen der Modulprüfung
SPECTROSCOPY" is highly recomme Frequency: each semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: seminar Language: English	Modern Solid State NMR Spectrosco	ору

Contact Hours: 2

Literature:

- M. H. Levitt, spin Dynamics, John Wiley and Sons, Ltd., 2008.
- H. Günther NMR spectroscopy, Wiley, 2001.
- M. Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- D. Canet, NMR concepts and methods, Springer, 1994.

Part of the Module: Method Course: Modern Solid State NMR Spectroscopy (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Literature:

- 1. M. H. Levitt, Spin Dynamics, John Wiley and Sons, Ltd., 2008.
- 2. H. Günther, NMR spectroscopy, Wiley 2001.
- 3. M.Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- 4. D. Canet: NMR concepts and methods, Springer, 1994.

Examination

Method Course: Modern Solid State NMR Spectroscopy

report / work period for assignment: 2 weeks

Examination Prerequisites:

Method Course: Modern Solid State NMR Spectroscopy

Module PHM-0206: Method Cour under Pressure Method Course: Infrared Microspectro		8 ECTS/LP
Version 1.0.0 (since WS16/17) Person responsible for module: Prof. I	Dr. Christine Kuntscher	
Contents: Electrodynamics of solids		
Maxwell equations and electromagnet	ic waves in matter	
Optical variables		
Theories for dielectric function:		
i. Free carriers in metals and semicond	ductors (Drude)	
ii. Interband absorptions in semiconduiii. Vibrational absorptionsiv. Multilayer systems	ctors and insulators	
FTIR microspectroscopy		
Components of FTIR spectrometers i. Light sources ii. Interferometers iii. Detectors		
Microscope components High pressure experiments Equipment	ts	
Pressure calibration		
Experimental techniques under high pr i. IR spectroscopy ii. Raman scattering iii. Magnetic measurements iv. Transport measurements	ressure	
Learning Outcomes / Competences		
The students		
_	raction with various materials and the fur	
	uipments used in infrared spectroscopy,	
Learn to carry out infrared microspectr	oscopy experiments under pressure,	
Learn to analyze the measured optical	spectra.	
Workload: Total: 240 h		
Conditions: none		Credit Requirements: Written report
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure

Mode of Instruction: lecture

Language: German

Contact Hours: 2

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (lecture)

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure (Practical Course)

Mode of Instruction: laboratory course

Language: German

Contact Hours: 4

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (Practical Course) (internship)

Examination

Method Course: Infrared Microspectroscopy under Pressure report

Module PHM-0216: Method Course: Thermal Analysis	rse: Thermal Analysis	8 ECTS/LP
Version 1.0.0 (since WS16/17) Person responsible for module: Prof. Dr. Robert Horny	Dr. Ferdinand Haider	
Contents:		
Methods of thermal analysis: - Differential Scanning Calorimetry: D - Thermo-gravimetric Analysis: TG - Dilatometry: DIL - Dynamic-mechanical Analysis: DMA Advanced Methods: - Modulated Differential Scanning Cal - Evolved Gas Analysis: EGA GCMS,	lorimetry: MDSC	
Learning Outcomes / Competences The students:	S:	
processes (metals, polymers, c	al processes in condensed matter ,e.g. eramics) plex experiments and the usage of adv	
Remarks:		
30 h studying of course content using 30 h studying of course content using	gh exercises / case studies (self-study literarture (self-study)	
Conditions: Recommended: basic knowledge in s	olid-state physics	Credit Requirements: regular participation, oral presentation (10 min), written report
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course Mode of Instruction: lecture Lecturers: Prof. Dr. Ferdinand Haide		

Language: English

Contact Hours: 2

Part of the Module: Method Course: Thermal Analysis (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Examination Method Course: Thermal Analysis report

Module PHM-0224: Method Cour mulation Method Course: Theoretical Concepts	rse: Theoretical Concepts and Si-	8 ECTS/LF
Version 1.0.0 Person responsible for module: Prof. I	Dr. Liviu Chioncel]
	nods (computational algorithms) for class d. The following common applications wil	
 Monte-Carlo integration, stochas Feynman path integrals: the cor Oder and disorder in spin system 	nection between classical and quantum	systems
The students are able to presen	: aining numerical solutions to problems to t (graphically), discuss and analyze the r formulatind and carrying out a collabora	esults
Remarks: The number of students will be limited	to 8.	
Workload: Total: 240 h 90 h preparation of presentations (self 60 h preparation of written term paper 60 h studying of course content (self-s 90 h (attendance)	s (self-study)	
Conditions: Knowledge of the programming langus taught in the modul PHM-0041. Requi in physics: Classical Mechanics (New Thermodynamics and Quantum Mech	rements to understand basic concepts on, Lagrange), Electrodynamics,	Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Theoretical Concepts and Simulation

Mode of Instruction: lecture

Language: English / German

Contact Hours: 2

Contents:

Concepts of classical and quantum statistical physics:

- the meaning of sampling, random variables, ergodicity
- equidistribution, pressure, temperature
- · path integrals, quantum statistics, enumeration, cluster algorithms

Literature:

- 1. Werner Krauth, Algorithms and Computations (Oxford University Press, 2006)
- 2. R. H. Landau, A Survey of Computational Physics (Princeton Univ. Press, 2010)

Part of the Module: Method Course: Theoretical Concepts and Simulation (Practical Course)

Mode of Instruction: internship

Language: English / German

Contact Hours: 4

Contents:

see above

Literature:

see above

Examination

Method Course: Theoretical Concepts and Simulation

report / work period for assignment: 4 weeks

Description:

The requirement for the credit points is based on a programming project carried out in a team of 2-3 students. The final report contains the formulation and a theoretical introduction into the problem, the numerical implementation, and the presentation of the results.

Module PHM-0223: Method Court ting		8 ECTS/LP
Method Course: Tools for Scientific Co	mputing	
Version 1.0.0 (since SoSe18)		
Person responsible for module: Prof. D	r. Gert-Ludwig Ingold	
students. As far as tools depend on a p discussed include:	are taught in this module and applied to particular programming language, Pytho	
 numerical libraries like NumPy ar visualisation of numerical results use of a version control system li testing of code profiling documentation of programs 	-	e work
 They are able to visualize the res The students know examples of a The students know methods for a run-time problems. The students know a distributed 	ing a physical problem of some complex sults and to adequately document their p numerical libraries and are able to apply quality assurance like the use of unit tes version control system and are able to u cal experience in a collaborative project	orogram code. y them to solve scientific problems. ts. They know techniques to identify use it in a practical problem.
Remarks:	_	
The number of students will be limited	to 12.	
Workload: Total: 240 h 60 h studying of course content (self-st 90 h (attendance) 30 h preparation of presentations (self- 60 h preparation of written term papers	study)	
Conditions: Knowledge of the programming langua taught in the module PHM-0041 "Einfül Physiker und Materialwissenschaftler".	hrung in das Programmieren für	Credit Requirements: Bestehen der Modulprüfung
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English / German Contact Hours: 2	Tools for Scientific Computing	

Learning Outcome:

- The students know the numerical libraries NumPy and SciPy and selected tools for the visualization of numerical results.
- The students know fundamental techniques for the quality assurance of programs like the use of unit tests, profiling and the use of the version control system git. They are able to adequately document their code.

Contents:

- numerical libraries NumPy and SciPy
- graphics with matplotlib
- · version control system Git and workflow for Gitlab/Github
- unit tests
- profiling
- · documentation using docstrings and Sphinx

Literature:

• A. Scopatz, K. D. Huff, Effective Computation in Physics (O'Reilly, 2015)

Part of the Module: Method Course: Tools for Scientific Computing (Practical Course)

Mode of Instruction: internship

Language: English / German

Contact Hours: 4

Learning Outcome:

- The students are capable of solving a physical problem of some complexity by means of numerical techniques and to visualize the results.
- They have gained some experience in the application of methods for quality assurance of their code and are able to appropriately document their programs.
- The students are able to work in a team and know how to make use of tools like Gitlab/Github.
- The students are able to present the status of their work, to critically assess it and to accept suggestions from others.

Contents:

The tools discussed in the lecture will be applied to specific scientific problems by small teams of 2-3 students under supervision. The teams regularly inform the other teams in oral presentations on their progress, the tools employed as well as encountered problems and their solution.

Examination

Method Course: Tools for Scientific Computing

report / work period for assignment: 4 weeks

Description:

The requirement for credit points is based on a scientific programming project carried out in a small team of 2-3 students. The work will be judged on the basis of a joint final report and the contributions of the individual students as documented in the team's Gitlab project. The final report should contain an explanation of the scientific problem and its numerical implementation as well as a presentation of results. The code should be appropriately documented and tested.

Module PHM-0150: Method Course Matter Method Course: Spectroscopy on Cond		8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Dr. Ste	phan Krohns	
Contents: Dielectric Spectroscopy [8] • Methods • Cryo-techniques • Measurement quantities • Relaxation processes • Dielectric phenomena		
 Ferroelectric Materials [7] Mechanism of ferroelectric polari Hysteresis loop measurements Dielectric spectroscopy 	zation	
Glassy Matter [8]IntroductionGlassy phenomenaDielectric spectroscopy		
 Multiferroic Materials [7] Introduction Microscopic origins of multiferroid Pyrocurrent measurements Dielectric spectroscopy 	city	
are instructed in experimental meare trained in planning and perfodata,	f dielectric spectroscopy and the phenor ethods for the investigation of the dielect rming complex experiments. They learn n experimental solid state physics, inclu	tric properties of condensed matter, to evaluate and analyze the collected
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h		
Conditions: Recommended: basic knowledge in so physics of glasses and supercooled liq		Credit Requirements: written report on the experiments (editing time 2 weeks)
Frequency: irregular (usu. winter semester) Contact Hours:	Recommended Semester: from 1. Repeat Exams Permitted:	Minimal Duration of the Module: 1 semester[s]
6	according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Spectroscopy on Condensed Matter

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

- N.W. Ashcroft, N.D. Mermin, Festkörperphysik (Oldenbourg)
- Ch. Kittel, Einführung in die Festkörperphysik (Oldenbourg)
- C.J.F. Böttcher, P. Bordewijk, Theory of Electric Polarization (Elsevier)
- J. R. Macdonald, Impedance Spectroscopy (Wiley)
- H. Scholze, Glas (Springer)
- S.R. Elliott, Physics of Amorphous Materials (Longman)
- R. Zallen, The Physics of Amorphous Solids (Wiley)

Assigned Courses:

Method Course: Spectroscopy on Condensed Matter (lecture)

Part of the Module: Method Course: Spectroscopy on Condensed Matter (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Spectroscopy on Condensed Matter (Practical Course) (internship)

Examination

Method Course: Spectroscopy on Condensed Matter

written exam / length of examination: 120 minutes

Examination Prerequisites:

Method Course: Spectroscopy on Condensed Matter

Module PHM-0158: Introduction Introduction to Materials	n to Materials (= Seminar)	4 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof.	Dr. Ferdinand Haider	
Contents: Varying topics for each year, giving a modern materials.	an overview into scope, application, req	uirements and preparation of all types of
Learning Outcomes / Competence The students:	s:	
	lications and processes of modern mate npile knowledge for examples of materi audience.	
Remarks: COMPULSORY MODULE		
Workload: Total: 120 h		
Conditions: Recommended: basic knowledge in I	materials science	Credit Requirements: regular participation, oral presentation with term paper (30 - 45 minutes)
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 2	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Introduction to Mode of Instruction: seminar Language: English Contact Hours: 2	Materials (Seminar)	

specific for each topic, to be gathered by the students

Examination

Introduction to Materials presentation

Examination Prerequisites:

Introduction to Materials

Module PHM-0159: Laboratory Project Laboratory Project		10 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: P	rof. Dr. Dirk Volkmer	
Contents: Experimental or theoretical work 3 months.	n a laboratory / research group in the Instit	tute of Physics. Has to be conducted within
Learning Outcomes / Competer	nces:	
research groups, experience the day to day I 	and concepts to pursuit a real research pr ife in a research group from within, duct a research project during their Masters	
Workload: Total: 300 h		
Conditions: Recommended: solid knowledge Materials Science, both experime	in (solid state) Physics, Chemistry and ntally and theoretically	Credit Requirements: 1 written report (editing time 2 weeks)
Frequency: each semester	Recommended Semester: from 3.	Minimal Duration of the Module: 0 semester[s]
Contact Hours: 8	Ontact Hours: Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Laboratory Mode of Instruction: internship Language: English Contact Hours: 8	Project	
Literature: • Various		
Examination Laboratory Project		

project work

Examination Prerequisites:

Laboratory Project

Module PHM-0051: Biophysic Biophysics and Biomaterials	cs and Biomaterials	6 ECTS/LP
Version 1.0.0 (since WS09/10) Person responsible for module: D	. Stefan Thalhammer	
Contents: • Radiation Biophysics • Microfluidics • Membranes • Membranal transport		
Learning Outcomes / Competen The students:	ces:	
 learn models of the (bio)poly neuronal networks, adapt skills in the independent translate a biological oberset Integrated acquirement of set 	and phenomena of biological physics, mer-theory, microfluidic, radiation biophys ent processing of problems and deal with c rvation into a physical question. oft skills: autonomous working with special pacity for teamwork, ability to document ex	urrent literature. They will be able to ist literature in english, acquisition of
	sing provided materials (self-study) rough exercises / case studies (self-study)	
Conditions: Mechanics, Thermodynamics, Sta Molecular Biology	tistical Physics, basic knowledge in	
Frequency: each semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Biophysics Mode of Instruction: lecture Language: English Contact Hours: 3	and Biomaterials	
Learning Outcome: see module description		

Contents:
Radiation Biophysics
 Radiation sources Interaction of radiation with biological matter Radiation protection principles Low dose radiation LNT model in radiation biophysics Microfluidics
 Life at Low Reynolds Numbers The Navier-Stokes Equation Low Reynolds Numbers – The Stokes Equation Breaking the Symmetry Membranes
 Thermodynamics and Fluctuations Thermodynamics of Interfaces Phase Transitions – 2 state model Lipid membranes and biological membranes, membrane elasticity Membranal transport
 Random walk, friction and diffusion Transmembranal ionic transport and ion channels Electrophysiology of cells Neuronal Dynamics
 Literature: T. Herrmann, Klinische Strahlenbiologie – kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1 J. Freyschmidt, Handbuch diagnostische Radiologie – Strahlenphysik, Strahlenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3 S. Haeberle, R. Zengerle, Microfluidic platforms for lab-on-a-chip applications, Lab-on-a-chip, 2007, 7, 1094-1110 J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9 lecture notes
Assigned Courses:
Biophysics and Biomaterials (lecture)
Part of the Module: Biophysics and Biomaterials (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 1 Assigned Courses:
Biophysics and Biomaterials (Tutorial) (exercise course)
Examination

Biophysics and Biomaterials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Biophysics and Biomaterials

Module PHM-0160: Dielectric and Dielectric and Optical Materials	d Optical Materials	6 ECTS/LP	
Version 1.1.0 (since SoSe15) Person responsible for module: Prof. Dr. Joachim Deisenhofer			
Contents: Optical materials:			
 Fundamentals of electromagnetic wave propagation in homogenous media (refraction, reflection, transmission, absorption) Anisotropic media, linear optics Optical properties semiconductors/insulators, molecular materials, metals Absorption and Luminescence, excitons, luminescence centers optoelectronics, detectors, light emitting devices quantum confinement 			
Dielectric materials: Experimental techniques: quantit 	 Dielectric materials: Experimental techniques: quantities, broadband dielectric spectroscopy, nonlinear and polarization 		
 measurements Dynamic processes in dielectric materials: relaxation processes, phenomenological models Dielectric properties of disordered matter: liquids, glasses, plastic crystals Charge transport: hopping conductivity, universal dielectric response, ionic conductors Maxwell-Wagner relaxations: equivalent-circuits, applications (supercapacitors), colossal-dielectric-constant materials Ferroelectricity: dielectric properties, polarization, relaxor ferroelectrics, applications Multiferroic materials: mechanisms, materials, applications 			
Learning Outcomes / Competences: Students know the fundamentals of electromagnetic wave propagation and have a sound background for a broad spectrum of dielectric and optical phenomena. They are able to analyze materials requirements and have the competence to select materials for different kinds of applications.			
Remarks: Elective compulsory module			
Workload: Total: 180 h 60 h lecture and exercise course (attendance) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using provided materials (self-study)			
Conditions: Basic knowledge of solid state physics			
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]	
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program		

Parts of the Module

Part of the Module: Dielectric and Optical Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

Mark Fox, Optical Properties of Solids, Oxford Master Series

Assigned Courses:

Dielectric and Optical Materials (lecture)

Examination

Dielectric and Optical Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Dielectric and Optical Materials

Module PHM-0059: Magnetism Magnetism	1	6 ECTS/LP	
Version 1.0.0 (since WS09/10)			
Person responsible for module: Dr. Hans-Albrecht Krug von Nidda			
Contents:			
 History, basics 			
Magnetic moments, classical	 Magnetic moments, classical and quantum phenomenology 		
Exchange interaction and mean-field theory			
Magnetic anisotropy and magnetoelastic effects			
Thermodynamics of magnetic			
Magnetic domains and domai			
Magnetization processes and	micro magnetic treatment		
 AC susceptibility and ESR Spintransport / spintronics 			
 Recent problems of magnetisi 	m		
Learning Outcomes / Competence			
The students:	5.		
 know the basic properties and phenomena of magnetic materials and the most important methods and concepts for their description, like mean-field theory, exchange interactions and micro magnetic models, have the ability to classify different magnetic phenomena and to apply the corresponding models for their interpretation, and have the competence independently to treat fundamental and typical topics and problems of magnetism. Integrated acquirement of soft skills. 			
Total: 180 h 60 h lecture and exercise course (at 80 h studying of course content thro 20 h studying of course content usir 20 h studying of course content usir	nugh exercises / case studies (self-study) ng literarture (self-study)		
Conditions:			
basics of solid-state physics and qua	antum mechanics		
Frequency: annually	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]	
Contact Hours:	Repeat Exams Permitted:		
4	according to the examination		
4	according to the examination regulations of the study program		
4 Parts of the Module			
Parts of the Module			
Parts of the Module Part of the Module: Magnetism			
Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture			
Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture Language: English			
Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture Language: English Contact Hours: 3			
Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:			

- D. H. Martin, Magnetism in Solids (London Iliffe Books Ltd.)
- J. B. Goodenough, Magnetism and the Chemical Bond (Wiley)
- P. A. Cox, Transition Metal Oxides (Oxford University Press)
- C. Kittel, Solid State Phyics (Wiley)
- D. C. Mattis, The Theory of Magnetism (Wiley)
- G. L. Squires, Thermal Neutron Scattering (Dover Publications Inc.)

Assigned Courses:

Magnetism (lecture)

Part of the Module: Magnetism (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Magnetism (Tutorial) (exercise course)

Examination

Magnetism

written exam / length of examination: 90 minutes

Examination Prerequisites:

Magnetism

Module PHM-0048: Physics and	Technology of Semiconductor	6 ECTS/LP
Devices Physics and Technology of Semicondu	ictor Devices	
Version 1.0.0 (since WS09/10) Person responsible for module: Prof. D)r. Hubert J. Krenner	
Contents:		
	ors (electronic bandstructure, doping, car istors	rier excitations and carrier transport)
Learning Outcomes / Competences:		· · · · · · · · · · · · · · · · · · ·
 excitations, and carrier transport. Application of developed concept semiconductors. Application of these concepts to such as diodes and transistors Knowledge of the technologically Integrated acquisition of soft skill 	nd semiconductor physics such as electr ts (effective mass, quasi-Fermi levels) to describe and understand the operation p relevant methods and tools in semicond s: autonomous working with specialist lit y for teamwork, ability to document expe	describe the basic properties of principles of semiconductor devices ductor micro- and nanofabrication. erature in English, acquisition of
Workload: Total: 180 h 20 h studying of course content using p 20 h studying of course content using l 80 h studying of course content throug	iterarture (self-study) h exercises / case studies (self-study)	
60 h lecture and exercise course (atter	ndance)	r
Conditions: recommended prerequisites: basic kno physics and quantum mechanics.	wledge in solid state physics, statistical	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Physics and Tec Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	hnology of Semiconductor Devices	
see module description		
Contents: see module description		

- Yu und Cardona: Fundamentals of Semiconductors (Springer)
- Sze: Physics of Semiconductor Devices (Wiley)
- Sze: Semiconductor Devices (Wiley)
- Madelung: Halbleiterphysik (Springer)
- Singh: Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)

Part of the Module: Physics and Technology of Semiconductor Devices (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Contents:

see module description

Examination

Physics and Technology of Semiconductor Devices

written exam / length of examination: 90 minutes

Examination Prerequisites:

Physics and Technology of Semiconductor Devices

Module PHM-0049: Nanostructur Nanostructures / Nanophysics	es / Nanophysics	6 ECTS/LP	
Version 1.1.0 (since WS09/10) Person responsible for module: Prof. Dr. Hubert J. Krenner			
2. Magnetotransport in low-dimensi	rires and dots, low dimensional electron onal systems, Quanten-Hall-Effect, Qua ells and quantum dots and their application	ntized conductance	
 Profound knowledge of low-dime novel functional devices for high- Knowledge of different fabrication Application of these concepts to Integrated acquirement of soft sk 	ntal concepts in modern nanoscale scier nsional semiconductor structures and ho frequency electronics and optoelectronic n approaches using bottom-up and top-d tackle present problems in nanophysics iills: autonomous working with specialist y for teamwork, ability to document expe	ow these systems can be applied for cs lown techniques literature in English, acquisition of	
Workload: Total: 180 h 80 h studying of course content through 20 h studying of course content using h 60 h lecture and exercise course (atten 20 h studying of course content using p	iterarture (self-study) idance)		
Conditions: recommended prerequisites: basic kno quantum mechanics.	wledge in solid-state physics and		
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]	
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program		
Parts of the Module			
Part of the Module: Nanostructures / Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4	/ Nanophysics		
Learning Outcome: see module description			
Contents: see module description			

- Yu und Cardona: Fundamentals of Semiconductors
- Singh:Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)
- Davies: The Physics of low-dimensional Semiconductors (Cambridge University Press)

Examination

Nanostructures / Nanophysics

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Nanostructures / Nanophysics

Module PHM-0203: Physics of C Physics of Cells	ells	6 ECTS/LF
Version 1.1.0 (since WS16/17)		
Person responsible for module: Prof. I	Dr. Achim Wixforth	
Dr. Christoph Westerhausen		
Contents:		
Physical principles in Biology		
	rial properties: cell membrane, organelles	s, cytoskeleton
 Thermodynamics of proteins an Physical methods and technique 	-	
 Cell adhesion – interplay of spe 		
	f tissue - macromolecules of the extra cel	llular matrix
 Micro mechanics and properties 	s of the cell as a biomaterial	
Cell-cell-communication		
Cell migration		
Cell stimulation and cell-comput		
Learning Outcomes / Competences The students	:	
 get to know a highly interdiscipli loarn the basics on physical pro- 	nary field of physics. perties of human cells, as building blocks	of living organisms and their material
 realiti the basics on physical pro properties. 	perties of numari cells, as building blocks	
 learn about the impact of forces 	on the behavior of living cells	
	damental biological processes and prope	erties of biomaterials.
are able to express biophysical	questions and define model systems to a	nswer these questions.
The students learn the following key of	ualifications:	
 self-dependent working with En 	glish specialist literature.	
• presentation techniques.	-	
 documentation of experimental 		
 interdisciplinary thinking and wo 	irking.	
Workload:		
60 h lecture and exercise course (atte	ndance)	
20 h studying of course content using		
20 h studying of course content using		
	gh exercises / case studies (self-study)	Credit Deguirementer
Conditions: Mechanics, Thermodynamics		Credit Requirements: Bestehen der Modulprüfung
	Recommended Competent	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Physics of Cells	5	

Language: English / German

Contact Hours: 2

Learning Outcome:

see module description

Contents:

see module description

Literature:

- Sackmann, Erich, and Rudolf Merkel. Lehrbuch der Biophysik. Wiley-VCH, 2010.
- Nelson, Philip. Biological physics. New York: WH Freeman, 2004.
- Boal, D. Mechanics of the Cell. Cambridge University Press, 2012.
- Lecture notes

Part of the Module: Physics of Cells (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 2

Learning Outcome:

see module description

Contents:

see module description

Literature:

see module description

Examination

Physics of Cells

oral exam / length of examination: 30 minutes

Chemical Physics II /ersion 1.3.0 (since WS09/10) Person responsible for module: Prof.		
PD Dr. Georg Eickerling	Dr. Wolfgang Scherer	
Contents: Introduction to computational ch Hartree-Fock Theory DFT in a nutshell Prediction of reaction mechanis calculation of physical and cher	ms	
earning Outcomes / Competences	3:	
 molecules and solid-state comp have therefore the competence Fock and Density Functional The materials with regard to their chemical solution of the solution of th	to autonomously perform simple quantur neory (DFT) and to interpret the electronic	n chemical calculations using Hartree- s structure of functional molecules and
temarks: is possible for students to do quantu nolecules on a computer cluster with	um chemical calculations autonomously a in the scope of the tutorial.	nd analyze electronical structures of
Vorkload: otal: 180 h 0 h lecture and exercise course (atte 0 h studying of course content throug 0 h studying of course content using 0 h studying of course content using	gh exercises / case studies (self-study) literarture (self-study)	-
Conditions: is highly recommended to complete	the module Chemical Physics I first.	
requency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Chemical Physion Mode of Instruction: lecture anguage: English Contact Hours: 3	ics II	

see module description

- I. N. Levine, Quantum Chemistry, Pearson, 7th ed 2013.
- A. Szabo, N. S. Ostlund, Modern Quantum Chemistry, Dover, 1996 (EbookCentral ebook).
- E. G. Lewars, Computational Chemistry, Springer, 2011.
- D. C. Young, Computational Chemistry: A practical guide for applying techniques to real world problems, Wiley ebook, **2002**.
- R. A. van Santen, Ph. Sautet, Computational Methods in Catalysis and Materials Science, Wiley ebook, 2009.
- P. Popelier, Atoms in Molecules: An Introduction, Pearson Education Limited, 2000.
- A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc. Pittsburg, PA.

Assigned Courses:

Chemical Physics II (lecture)

Part of the Module: Chemical Physics II (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see module description

Assigned Courses:

Chemical Physics II (Tutorial) (exercise course)

Examination

Chemical Physics II

written exam / length of examination: 90 minutes

Examination Prerequisites:

Chemical Physics II

	n Materials	6 ECTS/LF
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. I Dr. Hana Bunzen	Dr. Dirk Volkmer	<u> </u>
Contents:		
A) Basics of coordination Chemistry		
 Historical development of coordi Structures and nomenclature rul Chemical bonds in transition me Stability of transition metal coord Characteristic reactions [3] 	es [2] tal coordination compounds [3]	
B) Selected classes of functional mate	rials	
 Bioinorganic chemistry [3] Coordination polymers / metal-o Coordination compounds in med Photochemistry of coordination of 	lical applications [3]	
Learning Outcomes / Competences The students	:	
transition metal compounds),broaden their capabilities to intercoordination compounds,	concepts of chemical bonding in coordina rpret UV/vis absorption spectra and to pr f coordination chemistry onto topics of m kills.	edict stability and reactivity of
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 180 h	ndance)	· · · · · · · · · · · · · · · · · · ·
60 h lecture and exercise course (atten 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug	literarture (self-study)	
20 h studying of course content using 20 h studying of course content using	literarture (self-study) provided materials (self-study) gh exercises / case studies (self-study)	
20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug Conditions: Recommended: The lecture course is	literarture (self-study) provided materials (self-study) gh exercises / case studies (self-study)	Minimal Duration of the Module: 1 semester[s]

Part of the Module: Coordination Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 3

- Joan Ribas Gisbert, Coordination Chemistry, Wiley-VCH
- Lutz H. Gade, Koordinationschemie, Wiley-VCH
- · As well as selected reviews and journals articles cited on the slides

Assigned Courses:

Coordination Materials (lecture)

Part of the Module: Coordination Materials (Tutorial)

Mode of Instruction: exercise course Language: English

Contact Hours: 1

Assigned Courses:

Coordination Materials (Tutorial) (exercise course)

Examination

Coordination Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Coordination Materials

Module PHM-0113: Advanced So	olid State Materials	6 ECTS/LP
Advanced Solid State Materials		
Version 1.0.0 (since WS10/11)		
Person responsible for module: Prof. D	Dr. Henning Hoppe	
Contents:		
Repitition of concepts	1-	
 Novel silicate-analogous materia Luminescent materials 	llS	
Pigments		
 Heterogeneous catalysis 		
Learning Outcomes / Competences:		
		es and properties of functional materials,
	erties of chemical compounds, based	
	-	iture technological developments, and
 will know how to measure the pro- 	-	
 Integrated acquirement of soft sk 	•	
Workload:		
Total: 180 h		
60 h lecture and exercise course (atter	ndance)	
20 h studying of course content using I	literarture (self-study)	
80 h studying of course content throug	h exercises / case studies (self-study))
20 h studying of course content using p	provided materials (self-study)	
Conditions:		
	d Chemie II or Festkörperchemie	
Conditions: Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis		
Contents of the modules Chemie I, and		Minimal Duration of the Module:
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis	ssenschaften)	Minimal Duration of the Module: 1 semester[s]
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis	Recommended Semester: from 2.	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester	ssenschaften) Recommended Semester:	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours:	Recommended Semester: from 2. Repeat Exams Permitted:	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome:	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome:	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description Contents: see module description	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description Contents: see module description	ssenschaften) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program State Materials	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description Contents: see module description Literature:	ssenschaften) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program State Materials State Materials Env and Its Applications	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description Contents: see module description Literature: • A. West, Solid State Chemist	ssenschaften) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program State Materials state Materials and Its Applications ate Chemistry	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description Contents: see module description Literature: • A. West, Solid State Chemist • L. Smart, E. Moore, Solid State	ssenschaften) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program State Materials state Materials and Its Applications ate Chemistry	

Examination

Advanced Solid State Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Advanced Solid State Materials

Module PHM-0217: Advanced X- niques Advanced X-ray and Neutron Diffractic	ray and Neutron Diffraction Tech-	6 ECTS/L
Version 1.0.0 (since SoSe17) Person responsible for module: Prof. E PD Dr. Georg Eickerling		
Contents:		
 The failure of the standard <i>Indep</i> Beyond the standard model: The How to obtain and analyze expe 	pendent Atom <i>M</i> odel (IAM) in X-ray diffra e multipolar model rimental charge densities sical properties from diffraction data	ction
Learning Outcomes / Competences: The students:		-
neutron diffraction dataknow the basics of the <i>Quantum</i>	e on the reconstruction of accurate electro Theory of Atoms in Molecules pology of the electron density and correla	
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atter	h exercises / case studies (self-study) literarture (self-study)	
Conditions: It is recommended to complete the Mo	dule PHM-0053 Chemical Physics I.	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module	·	
Part of the Module: Advanced X-ray Mode of Instruction: lecture Language: English	and Neutron Diffraction Techniques	

Contact Hours: 3

- 1. C. Giacovazzo et al., Fundamentals of Crystallography, Oxford Univ. Press, 2011.
- 2. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford Univ. Press, 1997.
- 3. P. Popelier, Atoms in Molecules: An Introduction, Longman, 1999.
- 4. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford Univ. Press, 1997.
- 5. P. Popelier, Atoms in Molecules: An Introduction, Longman, 1999.

Assigned Courses:

Advanced X-ray and Neutron Diffraction Techniques (lecture)

Part of the Module: Advanced X-ray and Neutron Diffraction Techniques (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Advanced X-ray and Neutron Diffraction Techniques (Tutorial) (exercise course)

Examination

Advanced X-ray and Neutron Diffraction Techniques

written exam / length of examination: 90 minutes

Examination Prerequisites:

Advanced X-ray and Neutron Diffraction Techniques

Module PHM-0114: Porous Fun Porous Functional Materials	ctional Materials	6 ECTS/LP
Version 1.0.0 (since SS11)		
Person responsible for module: Prof.	Dr. Dirk Volkmer	
Contents: • Overview and historical develop • Structural families of porous fra • Synthesis strategies • Adsorption and diffusion • Thermal analysis methods • Catalytic properties • Advanced applications and curr Learning Outcomes / Competences • The students shall acquire know • broaden their capabilities to char and thermal analysis,	oments meworks rent trends s: wledge about design principles and syn	thesis of porous functional materials, with special emphasis laid upon sorption
Integrated acquirement of soft s Remarks: Subsequent to the lecture course, the	students can take part in a hands-on r	nethod course
`Porous Materials Synthesis and Cha	aracterization" to practice their knowled	ge.
60 h lecture and exercise course (atte 80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using Conditions:	gh exercises / case studies (self-study) literarture (self-study)	Credit Requirements:
participation in the course Materials C	Chemistry	one written examination, 90 min
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Porous Function Mode of Instruction: lecture Language: English Contact Hours: 4	onal Materials	
Contents: see module description		
Literature:	s Framework Solids (RSC Materials Mo	nographs, 2008)

· selected reviews and journal articles cited on the slides

Examination

Porous Functional Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Porous Functional Materials

Module PHM-0218: Novel Metho scopy	ds in Solid State NMR Spectro-	6 ECTS/L
Novel Methods in Solid State NMR Sp	pectroscopy	
Version 1.0.0 (since SoSe17) Person responsible for module: Prof. I	Dr. Leo van Wüllen	
Contents:		
The physical basis of nuclear magneti	c resonance	
Pulsed NMR methods; Fourier Transfo	orm NMR	
nternal interactions		
Magic Angle Spinning		
Modern pulse sequences or how to ob	tain specific information about the stru	cture and dynamics of solid materials
Recent highlights of the application of	modern solid state NMR in materials s	science
Workload:		
Total: 180 h		
Conditions:		Credit Requirements:
none		Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Novel Methods	in Solid State NMR Spectroscopy	
Mode of Instruction: lecture		
Language: German Contact Hours: 3		
Assigned Courses:		
Novel Methods in Solid State NMR	Spectroscopy (lecture)	
	in Solid State NMR Spectroscopy (T	utorial)
Mode of Instruction: exercise course		
Language: German Contact Hours: 1		
Literature:		
1. M. H. Levitt, Spin Dynamics, Jol	n Wiley and Sons. Ltd., 2008.	
2. H. Günther, NMR spectroscopy,	-	
	ate NMR spectroscopy, Blackwell Publ	lishing Ltd., 2004.
4. D. Canet: NMR - concepts and r	methods, Springer, 1994.	
Assigned Courses		
Assigned Courses.		
Assigned Courses: Novel Methods in Solid State NMR S	Spectroscopy (Tutorial) (exercise co	urse)

written exam / length of examination: 90 minutes

Module PHM-0167: Oxidation and Corrosion Oxidation and Corrosion	6 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. Dr. Ferdinand Haider	
Contents:	
Introduction	
Review of thermodynamics	
Chemical equilibria	
Electrochemistry	
Electrode kinetics	
High temperature oxidation	
Localized corrosion	
 Shallow pit corrosion Pitting corrosion Crevice corrosion Intercrystalline corrosion Stress corrosion cracking Fatigue corrosion Erosion corrosion Galvanic corrosion 	
Water and seawater corrosion	
Corrosion monitoring	
Corrosion properties of specific materials	
Specific corrosion problems in certain branches	
Oil and Gas industryAutomobile industryFood industry	
Corrosion protection	
 Passive layers Reaction layers (Diffusion layers) Coatings (organic, inorganic) Cathodic, anodic protection Inhibitors 	
Learning Outcomes / Competences: The students: • know the the fundamental basics, mechanics, and types of corrosion pr	ocesses,
obtain specific knowledge of one type of corrosion.	
Workload: Total: 180 h 60 h lecture and exercise course (attendance) 120 h studying of course content using provided materials (self-study)	
Conditions: Recommended: good knowledge in materials science, basic knowledge in physical chemistry	Credit Requirements: written exam (90 min)

Frequency: each winter semester	Recommended Semester: from 3.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Oxidation and Corrosion

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

Schütze: Corrosion and Environmental Degradation

Part of the Module: Oxidation and Corrosion (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Oxidation and Corrosion

written exam / length of examination: 90 minutes

Examination Prerequisites:

Oxidation and Corrosion

Module PHM-0164: Characteriza Characterization of Composite Materia		6 ECTS/LF
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. [Dr. Markus Sause	1
Contents: The following topics are presented:		
 Introduction to composite materi Applications of composite materi Mechanical testing Thermophysical testing Nondestructive testing 		
Learning Outcomes / Competences The students:	:	
are introduced to important conc		composite materials. d material models applied to composites. topic using various forms of information.
Workload: Total: 180 h 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atter 80 h studying of course content throug	provided materials (self-study) ndance)	/)
Conditions: Recommended: basic knowledge in m composite materials	aterials science, particularly in	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module	·	

Part of the Module: Characterization of Composite Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- Morgan: Carbon fibers and their composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe
- Dowling: Mechanical behaviour of materials
- Issler: Festigkeitslehre Grundlagen
- Landau, Lifschitz: Theoretische Physik Vol. 7

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Assigned Courses:

Characterization of Composite Materials (lecture)

Part of the Module: Characterization of Composite Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Assigned Courses:

Characterization of Composite Materials (Tutorial) (exercise course)

Examination

Characterization of Composite Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Characterization of Composite Materials

Conditions: Recommended: basic knowledge in r organic chemistry Frequency: each winter semester Contact Hours: 4	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module: 1 semester[s]
Recommended: basic knowledge in r organic chemistry Frequency: each winter semester	Recommended Semester: from 1.	
Recommended: basic knowledge in r	.	
Workload: Total: 180 h 80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte	provided materials (self-study)	
	ire further knowledge of the scientific topic	
 know the application areas of c know the basics of production t materials. 	composite materials. echnologies of fibers, polymeric, and cera chemical properties of fibers, matrices, an	
Learning Outcomes / Competences	s:	
	es of fibers and their precursor materials es of commonly used polymeric and cerar ogies	nic matrix materials
Contents: The following topics are treated:		
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. Frau Dr. Judith Moosburger-Will	Dr. Siegfried Horn	
	ssing and Materials Properties	

Language: English

Contact Hours: 3

Literature:

- · Morgan: Carbon fibers and their composites
- Ehrenstein: Polymeric materials
- Krenkel: Ceramic Matrix Composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunstoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe

Further litrature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Examination

Fiber Reinforced Composites: Processing and Materials Properties

written exam / length of examination: 90 minutes

Examination Prerequisites:

Fiber Reinforced Composites: Processing and Materials Properties

Module MRM-0052: Functional P	olymers	6 ECTS/L
Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof. D	or. Klaus Ruhland	
Contents:		
Introduction to polymer science		
 Elastomers and elastoplastic ma 	terials	
 Memory-shape polymers 		
 Piezoelectric polymers 		
Electrically conducting polymers		
 Ion-conducting polymers 		
 Magnetic polymers 		
 Photoresponsive polymers 		
 Polymers with second order non 	-linear optical properties	
 Polymeric catalysts 		
 Self-healing polymers 		
 Polymers in bio sciences> 		
Total: 180 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atter	h exercises / case studies (self-study) iterarture (self-study)	
Conditions:		
	035 (Chemie I), PHM-0036 (Chemie II)	
and MRM-0050 (Grundlagen der Polyr		
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module	·	
Part of the Module: Functional Poly	ners	
Mode of Instruction: lecture		
Language: English		

Contact Hours: 3

Assigned Courses:

Functional Polymers (lecture)

Part of the Module: Functional Polymers (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Functional Polymers (Tutorial) (exercise course)

Examination

Functional Polymers

written exam / length of examination: 90 minutes

Examination Prerequisites:

Functional Polymers

Non-Destructive Testing	ctive Testing	6 ECTS/LP
Version 1.0.0 (since WS14/15) Person responsible for module: Prof.	Dr. Markus Sause	
Contents:		
Introduction to nondestructive t	esting methods	
 Visual inspection 	5	
Ultrasonic testing		
 Guided wave testing 		
 Acoustic emission analysis 		
Thermography		
Radiography		
Eddy current testingSpecialized nondestructive met	thods	
Learning Outcomes / Competences The students	5:	
	of pondoatruptive evolution of metaricity	
	of nondestructive evaluation of materials acepts in nondestructive measurement to	
•	ire further knowledge of the scientific top	•
 Integrated acquirement of soft 	-	
Workload:		
Total: 180 h		
60 h lecture and exercise course (atte	endance)	
20 h studying of course content using	literarture (self-study)	
20 h studying of course content using		
80 h studying of course content throu	gh exercises / case studies (self-study)	- 1
Conditions:		
Basic knowledge on materials scienc	e, in particular composite materials	
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module:
• •		
	from 1.	1 semester[s]
Contact Hours:	from 1. Repeat Exams Permitted:	1 semester[s]
	Repeat Exams Permitted: according to the examination	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination	1 semester[s]
Contact Hours: 4 Parts of the Module	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Contact Hours: 4 Parts of the Module Part of the Module: Non-Destructive	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Contact Hours: 4 Parts of the Module Part of the Module: Non-Destructive Mode of Instruction: lecture Language: English	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Contact Hours: 4 Parts of the Module Part of the Module: Non-Destructiv Mode of Instruction: lecture	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Contact Hours: 4 Parts of the Module Part of the Module: Non-Destructiv Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Contact Hours: 4 Parts of the Module Part of the Module: Non-Destructive Mode of Instruction: lecture Language: English Contact Hours: 3	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Contact Hours: 4 Parts of the Module Part of the Module: Non-Destructiv Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]

Literature:

- Raj: Practical Non-destructive Testing
- Shull: Nondestructive Evaluation Theory and Applications
- Krautkrämer: Ultrasonic testing of materials
- Grosse: Acoustic Emission Testing
- Rose: Ultrasonic waves in solid media
- Maldague: Nondestructive Evaluation of Materials by Infrared Thermography
- Herman: Fundamentals of Computerized Tomography

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Part of the Module: Non-Destructive Testing (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Non-Destructive Testing

written exam / length of examination: 90 minutes

Examination Prerequisites:

Non-Destructive Testing

Module PHM-0168: Modern Metal Modern Metallic Materials	lic Materials	6 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D	r. Ferdinand Haider	
Contents: Introduction		
Review of physical metallurgy		
Steels:		
 principles common alloying elements martensitic transformations dual phase steels TRIP and TWIP steels maraging steel electrical steel production and processing 		
Aluminium alloys:		
 2xxx 6xxx 7xxx Processing – creep forming, hydr 	oforming, spinforming	
Titanium alloys		
Magnesium cast alloys		
Superalloys		
Intermetallics, high entropy alloys		
Copper, brass, bronzes		
Metallic glasses		
Alloy design		
 Learning Outcomes / Competences: Students learn about all kinds of actual met basic concepts 	tallic alloys, their properties and how the	ese properties can be derived from
Workload: Total: 180 h 60 h lecture and exercise course (atten 20 h studying of course content using p 20 h studying of course content using li 80 h studying of course content through	rovided materials (self-study) terarture (self-study)	
Conditions: Recommended: Knowledge of physical	metallurgy and physical chemistry	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]

Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program		
Parts of the Module			
Part of the Module: Modern	Metallic Materials		
Mode of Instruction: lecture			
Language: English	L anguage: English		
Contact Hours: 4			
Literature:			
Cahn-Haasen-Kramer: M	aterials Science and Technology		
Original literature			
Assigned Courses:			
Modern Metallic Materials (lecture)		
Examination			
Modern Metallic Materials			
written exam / length of examination: 90 minutes			

Examination Prerequisites:

Modern Metallic Materials

Module PHM-0196: Surfaces and	Interfaces II: Joining processes	6 ECTS/LP
Surfaces and Interfaces II: Joining proc	cesses	
Version 1.1.0 (since WS15/16)		
Person responsible for module: Prof. D	-	
Dozenten: Prof. Dr. Siegfried Horn, Dr.	Judith Moosburger-Will	
Learning Outcomes / Competences: The students		
- know the application areas of compos	ite materials	
- know the basics of cohesion and adhe	esion	
- know the basics of joining techniques		
	al properties metal-metal, metal-polyme	
- Are able to independently acquire furt	her knowledge of the scientific topic usir	ng various forms of information.
Workload: Total: 180 h		
Conditions:		Credit Requirements:
Basic knowledge on materials science,	lecture "Surfaces and Interfaces I"	Bestehen der Modulprüfung
Module Surfaces and Interfaces (PHM-	0117) - recommended	
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	any	
Parts of the Module	1	
Part of the Module: Surfaces and Inte	erfaces II: Joining processes	
Mode of Instruction: lecture		
Lecturers: Prof. Dr. Siegfried Horn		
Language: German		
Contact Hours: 3		
Contents:		
The following topics are treated:		
- Introduction to adhesion		
- Role of surface and interface prop		
- Introduction to interactions at surfa	aces and interfaces	
- Adhesion theories		
 Surface and interface energy Surface treatment techniques 		
- Joining techniques		
- Physical and chemical properties	of joints	
- Applications		
Literature:		
	papers and reviews, will be announced	at the beginning of the lecture.
Assigned Courses:		
Surfaces and Interfaces II: Joining p	rocesses (lecture)	
canados ana incondoco in coning p		

Examination

Surfaces and Interfaces II: Joining processes

written exam / length of examination: 90 minutes

Examination Prerequisites:

Surfaces and Interfaces II: Joining processes

Parts of the Module

Part of the Module: Übung zu Surfaces and Interfaces II: Joining processes

Mode of Instruction: exercise course

Language: German

Contact Hours: 1

Assigned Courses:

Übung zu Surfaces and Interfaces II: Joining processes (exercise course)

Module PHM-0166: Carbon-base als)	d functional Materials (Carboteri-	6 ECTS/LP
Carbon-based functional Materials (Ca	arboterials)	
Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof. D	Dr. Dirk Volkmer	
Contents: 1. Introduction to carbon allotropes and	d porous carbon materials [4]	
2. Physical properties of fullerenes, ca	rbon nanotubes and graphene [4]	
3. Solid state NMR spectroscopy of ca	rbon materials [4]	
4. Metal carbides [4]		
5. Carbon thin films and coatings [4]		
6. Manufacturing and processing techr	nology of carbon fibres [4]	
7. Carbon-fibre reinforced polymer con	nposites [4]	
8. Carbon-fibre reinforced aluminium (I	Metal Matrix Composites, MMC) [4]	
9. Energy storage in carbon materials	[4]	
10. Carbon-based materials for opto-e	lectronics [4]	
11. Quantum transport phenomena rel	ating to carbon materials [4]	
12. a) Manipulating heat flow with carb	on-based electronic analogs: phononics	in place of electronics [2]
12. b) Carbon-based spintronics [2]		
13. Fabrication and processing of carb	on-based nanostructures [4]	
Learning Outcomes / Competences: The students:		
-		
Workload: Total: 180 h 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug 60 h lecture and exercise course (atter	literarture (self-study) h exercises / case studies (self-study)	
Conditions:		
none		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Carbon-based functional Materials (Carboterials)

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

will be announced by the lecturers

Examination

Carbon-based functional Materials (Carboterials)

written exam / length of examination: 120 minutes

Examination Prerequisites:

Carbon-based functional Materials (Carboterials)

Module PHM-0174: Theoretical C Theoretical Concepts and Simulation	concepts and Simulation	6 ECTS/LP
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof. D	r. Liviu Chioncel	
Contents:		
2. Basic numerical methods: interp	programming languages, data visualiza blation, integration Equations (e.g., diffusion equation, Sch	
Learning Outcomes / Competences: The students:		
relevant in material science,	ermodynamics and statistical physics a s numerically. They are able to write the	
 have the expertise to find the nurveil validity of the numerical results, Integrated acquirement of soft skip 	merical method appropriate for the given sills: independent handling of hard- and gate abstract circumstances with the he	n problem and to judge the quality and
Remarks: Links to software related to the course		
 http://www.bloodshed.net/ http://www.cplusplus.com/doc/tu http://www.cygwin.com/ http://xmd.sourceforge.net/down http://www.rasmol.org/ http://felt.sourceforge.net/ 		
Workload: Total: 180 h 60 h lecture and exercise course (atter 80 h studying of course content throug 20 h studying of course content using l 20 h studying of course content using j	h exercises / case studies (self-study) iterarture (self-study)	
Conditions: Recommended: basic knowledge of qu and numerical methods as well as of a	antum mechanics, thermodynamics,	Credit Requirements: project work in small groups, including a written summary of the results (ca. 10-20 pages) as well as an oral presentation
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Theoretical Concepts and Simulation

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- Tao Pang, An Introduction to Computational Physics (Cambridge University Press)
- J. M. Thijssen, Computational Physics (Cambridge University Press)
- Koonin, Meredith, Computational Physics (Addison-Weseley)
- D. C. Rapaport, The Art of Molecular Dynamics Simulation, (Cambridge University Press)
- W. H. Press et al, Numerical Recipes (Cambridge University Press)

Part of the Module: Theoretical Concepts and Simulation (Project)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Theoretical Concepts and Simulation

seminar / length of examination: 30 minutes

Examination Prerequisites:

Theoretical Concepts and Simulation

Module PHM-0058: Organic Se Organic Semiconductors	miconductors	6 ECTS/LP
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof	Dr. Wolfgang Brütting	
Contents: Basic concepts and applications of c	rganic semiconductors	
Introduction		
 Materials and preparation Structural properties Electronic structure Optical and electrical properties 	s	
Devices and Applications		
 Organic metals Light-emitting diodes Field-effect transistors Solar cells and laser 		
Learning Outcomes / Competence	s:	
functioning of components,and have the competence to c	ssification of the materials taking into acco omprehend and attend to current problems skills: practicing technical English, working	s in the field of organic electronics.
Workload: Total: 180 h 60 h lecture and exercise course (at 40 h studying of course content thro 40 h studying of course content usin 40 h studying of course content usin	ugh exercises / case studies (self-study) g provided materials (self-study)	
Conditions: It is strongly recommended to compl addition, knowledge of molecular ph	ete the module solid-state physics first. In ysics is desired.	
Frequency: every 3rd semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module	· · · · · · · · · · · · · · · · · · ·	
Part of the Module: Organic Semi	conductors	
Mode of Instruction: lecture		

Language: English

Contact Hours: 3

Learning Outcome:

see module description

Contents:

see module description

Literature:

- M. Schwoerer, H. Ch. Wolf: Organic Molecular Solids (Wiley-VCH)
- W. Brütting (editor): Physics of Organic Semiconductors (Wiley-VCH)
- A. Köhler, H. Bässler: Electronic Processes in Organic Semiconductors (Wiley-VCH)

Assigned Courses:

Organic Semiconductors (lecture)

Part of the Module: Organic Semiconductors (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Organic Semiconductors (Tutorial) (exercise course)

Examination

Organic Semiconductors

written exam / length of examination: 90 minutes

Examination Prerequisites:

Organic Semiconductors

Module PHM-0066: Supercond Superconductivity	luctivity	6 ECTS/LP
Version 1.0.0 (since WS11/12)		
Person responsible for module: PD	Dr. Reinhard Tidecks	
 Phenomenological Thermody Ginzburg-Landau Theory Microscopic Theories 	f the Superconducting State, an Overview namics and Electrodynamics of the SC the Nature of the Superconducting State luctors	
Learning Outcomes / Competenc		
The students:		
 Special attention will be drawn the superconducting state, to For self-studies a comprehent Workload:	mportant technical applications of superc n to the basic concepts of the main pheno explain the experimental observations. sive list of further reading will be supplied	omeno-logical and microscopic theories of
Total: 180 h		
60 h lecture and exercise course (a	-	
80 h studying of course content thro 20 h studying of course content usir	bugh exercises / case studies (self-study)	
20 h studying of course content usir 20 h studying of course content usir		
Conditions: • Physik IV – Solid-state physic • Theoretical physics I-III		
Frequency: every 3rd semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Superconduc	tivity	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 4		
Learning Outcome: see module description		
Contents:		

see module description

Literature:

- W. Buckel, Supraleitung, 5. Auflage (VCH, Weinheim, 1994)
- W. Buckel und R. Kleiner, Supraleitung, 6. Auflage (WILEY-VCH, Weinheim, 2004)
- M. Tinkham, Introduction to Superconductivity, 2nd Edition (McGraw-Hill, Inc., New York, 1996, Reprint by Dover Publications Inc. Miniola , 2004)
- Weitere Literatur wird in der Vorlesung angegeben

Examination

Superconductivity

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Superconductivity

Module PHM-0060: Low Temperature Physics	erature Physics	6 ECTS/LF
Version 1.0.0 (since WS09/10) Person responsible for module: PD	Dr. Reinhard Tidecks	I
Contents:		
 Introduction 		
Thermodynamic fundamentals	3	
 Gas liquification 		
 Properties of liquid helium 		
Cryogenic engineering		
 have acquired the theoretical 	es: natter at low temperatures and the corres knowledge to perform low-temperature n illy investigate current problems in low-te	neasurements,
Total: 180 h 20 h studying of course content usir 20 h studying of course content usir 60 h lecture and exercise course (at 80 h studying of course content thro	g literarture (self-study)	
Conditions: Physik IV - Solid-state physics		
Frequency: every 3rd semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Low Tempera Mode of Instruction: lecture Language: English	ture Physics	
Contact Hours: 3		
Learning Outcome: see module description		

Contents:

- Introduction
 - History, methods, realizations, and significance
- Thermodynamic fundamentals
 - Temperature, working cycles, real gases, Joul-Thomson-Effect
- · Gas liquification
 - Air, hydrogen, helium
 - Separation of Oxygen and nitrogen
 - Storage and transfer of liquefied gases, superinsulation
- · Properties of liquid helium
 - Production and thermodynamic properties of4He and3He
 - Phase diagrams (4He,3He)
 - Superfluidity of4He
 - Experiments, Two-Fluid-Model
 - Bose-Einstein-Condensation
 - Excitation spectrum, critical velocity
 - Rotating Helium
 - Normal and superfluid3He
 - -4He /3He-mixtures
- Cryogenic engineering
 - Bath-Cryostats (Helium-4, Helium-3),
 - -4He /3He-Dilution-Refrigerators
 - Pomeranchuck-Cooling
 - Adiabatic demagnetization
 - Primary and secondary thermometers

Literature:

- C. Enss, S. Hunklinger, Tieftemperaturphysik (Springer)
- F. Pobell, Matter and Methods at Low Temperatures (Springer)

Part of the Module: Low Temperature Physics (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Low Temperature Physics

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Low Temperature Physics

Porous Functional Materials Version 1.0.0 (since SS11) Person responsible for module: Prof. I Contents: • Overview and historical develop • Structural families of porous fran • Synthesis strategies • Adsorption and diffusion • Thermal analysis methods • Catalytic properties • Advanced applications and curr Learning Outcomes / Competences	oments meworks rent trends	
 Person responsible for module: Prof. I Contents: Overview and historical develop Structural families of porous frage Synthesis strategies Adsorption and diffusion Thermal analysis methods Catalytic properties Advanced applications and current 	oments meworks rent trends	
Contents: • Overview and historical develop • Structural families of porous frances • Synthesis strategies • Adsorption and diffusion • Thermal analysis methods • Catalytic properties • Advanced applications and curr	oments meworks rent trends	
 Overview and historical develop Structural families of porous fragorial Synthesis strategies Adsorption and diffusion Thermal analysis methods Catalytic properties Advanced applications and curr 	meworks rent trends	
 Structural families of porous frage Synthesis strategies Adsorption and diffusion Thermal analysis methods Catalytic properties Advanced applications and curr 	meworks rent trends	
 Adsorption and diffusion Thermal analysis methods Catalytic properties Advanced applications and curr 		
 Thermal analysis methods Catalytic properties Advanced applications and curr 		
Catalytic propertiesAdvanced applications and curr		
Advanced applications and curr		
 The students shall acquire know broaden their capabilities to cha and thermal analysis, 	vledge about design principles and syn aracterize porous solid state materials v technical applications of porous solids.	thesis of porous functional materials, vith special emphasis laid upon sorption
Remarks:		
Subsequent to the lecture course, the	students can take part in a hands-on r	nethod course
[*] Porous Materials Synthesis and Cha	aracterization" to practice their knowled	ge.
Workload:		
Total: 180 h	un aleman e a l	
60 h lecture and exercise course (atte 80 h studying of course content throug	gh exercises / case studies (self-study)	
20 h studying of course content using		
20 h studying of course content using	provided materials (self-study)	
Conditions: participation in the course Materials C	Chemistry	Credit Requirements: one written examination, 90 min
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Porous Functio	nal Materials	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 4		
Contents: see module description		
Literature:		
 Paul A. Wright, Microporous selected reviews and journal 	Framework Solids (RSC Materials Mo	nographs, 2008)

· selected reviews and journal articles cited on the slides

Examination

Porous Functional Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Porous Functional Materials

Module PHM-0068: Spintronics Spintronics		6 ECTS/L
Version 1.0.0 (since SoSe14)		
Person responsible for module: Dr. Ge	rman Hammerl	
Contents:		
 Introduction into magnetism 		
 Basic spintronic effects and devi 		
Novel materials for spintronic ap		
Spin-sensitive experimental met		
Semiconductor based spintronic	S	
Learning Outcomes / Competences:	:	
The students:		
 know the fundamental properties structures, 	s of magnetic materials, the basic spin	tronic effects, and the related device
	g materials with respect to their applica	ability for spintronic devices
	al with current problems in the field of s	
spintronics largely autonomous.		
Workload:		
Total: 180 h		
60 h lecture and exercise course (atter	ndance)	
20 h studying of course content using	provided materials (self-study)	
80 h studying of course content throug	h exercises / case studies (self-study)	
20 h studying of course content using l	literarture (self-study)	
Conditions:		
Conditions: none	Recommended Semester:	Minimal Duration of the Module:
Conditions: none	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Conditions: none Frequency: each summer semester Contact Hours:	from 2.	
Conditions: none Frequency: each summer semester Contact Hours:	from 2. Repeat Exams Permitted:	
Conditions: none Frequency: each summer semester Contact Hours:	from 2.	
Conditions: none Frequency: each summer semester	from 2. Repeat Exams Permitted: according to the examination	
Conditions: none Frequency: each summer semester Contact Hours: 4 Parts of the Module	from 2. Repeat Exams Permitted: according to the examination	
Conditions: none Frequency: each summer semester Contact Hours: 4	from 2. Repeat Exams Permitted: according to the examination	

Contact Hours: 3

Learning Outcome:

see module description

Contents:

see module description

Literature:

- N. W. Ashcroft, N. D. Mermin, Solid State Physics, Cengage Learning (2011), ISBN: 81-315-0052-7
- C. Felser, G. H. Hechter, Spintronics From Materials to Devices, Springer (2013), ISBN: 978-90-481-3831-9
- S. Bandyopadhyay, M. Cahay, Introduction to Spintronics, CRC Press (2008), ISBN: 978-0-9493-3133-6

Part of the Module: Spintronics (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Spintronics

written exam / length of examination: 90 minutes

Examination Prerequisites:

Spintronics

Module PHM-0057: Physics of T Physics of Thin Films	Thin Films	6 ECTS/LP
Version 1.0.0 (since WS09/10) Person responsible for module: Dr. G	erman Hammerl	
Contents: Layer growth Thin film technology Analysis of thin films Properties and applications of t 	hin films	
Learning Outcomes / Competences		
 have acquired skills of grouping and applications, and have the competence to deal w 	ith current problems in the field of thin fi skills: practicing technical English, worki	thin layers with respect to their properties
20 h studying of course content using 60 h lecture and exercise course (atte 20 h studying of course content using	endance)	
Conditions: none		
Frequency: every 3rd semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Physics of Thir Mode of Instruction: lecture Language: English Contact Hours: 4	ı Films	
Learning Outcome: see module description		
Contents: see module description		
 H. Lüth, Solid Surfaces, Inte A. Wagendristel, Y. Wang, A Publishing, 1994) 	nichttechnologie (VDI Verlag, 1987) erfaces and Thin Films (Springer Verlag An Introduction to Physics and Technolo cience of Thin Films (Academic Press, 1	ogy of Thin Films (World Scientific

Examination

Physics of Thin Films written exam / length of examination: 90 minutes Examination Prerequisites:

Physics of Thin Films

Module PHM-0056: Ion-Solid Ion-Solid Interaction	d Interaction	6 ECTS/LP
Version 1.0.0 (since WS09/10)		
Person responsible for module: a	apl. Prof. Dr. Helmut Karl	
 Fundamentals of atomic conclusion models) Ion-induced modification or 	ntific and technological application, principles) ollision processes (scattering, cross-sections, f solids (integrated circuit fabrication with emp nage, ion milling and etching (RIE), sputtering	energy loss models, potentials in binary ohasis on ion induced phenomena, ion
Learning Outcomes / Compete The students:	nces:	_
	te physical models for specific technological ork extensively autonomous on problems con	
	using provided materials (self-study) hrough exercises / case studies (self-study)	
Conditions: Basic Courses in Physics I–IV S	olid State Physics, Nuclear Physics	
Frequency: annually	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Ion-Solid In Mode of Instruction: lecture Language: English Contact Hours: 3	nteraction	
Learning Outcome: see module description		
Contents: see module description		

Literature:

- R. Smith, Atomic and ion collisions in solids and at surfaces (Cambridge University Press, 1997)
- E. Rimini, Ion implantation: Basics to device fabrication (Kluwer, 1995)
- W. Eckstein: Computer Simulation of Ion-Solid Interactions (Springer, 1991)
- H. Ryssel, I. Ruge: Ionenimplantation (Teubner, 1978)
- Y. H. Ohtsuki: Charged Beam Interaction with Solids (Taylor & Francis, 1983)
- J. F. Ziegler (Hrsg.): The Stopping and Range of Ions in Solids (Pergamon)
- R. Behrisch (Hrsg.): Sputtering by Particle Bombardment (Springer)
- M. Nastasi, J. K. Hirvonen, J. W. Mayer: Ion-Solid Interactions: Fundamentals and Applications (Cambridge University Press, 1996)
- http://www.SRIM.org

Assigned Courses:

Ion-Solid Interaction (lecture)

Part of the Module: Ion-Solid Interaction (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Ion-Solid Interaction (Tutorial) (exercise course)

Examination

Ion-Solid Interaction

written exam / length of examination: 90 minutes

Examination Prerequisites:

Ion-Solid Interaction

Applied Magnetic Materials and Me	agnetic Materials and Methods thods	6 ECTS/LP
Version 1.0.0 (since WS14/15)		
Person responsible for module: Prot	t. Dr. Manfred Albrecht	
Contents:		
 Basics of magnetism Ferrimagnets, permanent mag 	nete	
Magnetic nanoparticles	Juers	
Superparamagnetism		
Exchange bias effect		
 Magnetoresistance, sensors 		
Experimental methods (e.g. N	lößbauer Spectroscopy, mu-SR)	
Learning Outcomes / Competence	es:	
	terms and concepts of magnetism,	
	of basic physical relations and their appl	
	qualitative observations, interpret quant	
	physical effects of chosen magnetic mate t skills: autonomous working with special	-
	acity for teamwork, ability to document ex	
thinking and working.		
Workload:		
Tatal: 100 h		
Total: 180 h		
	ng provided materials (self-study)	
20 h studying of course content usir 20 h studying of course content usir	ng literarture (self-study)	
20 h studying of course content usin 20 h studying of course content usin 80 h studying of course content thro	ng literarture (self-study) hugh exercises / case studies (self-study)	
20 h studying of course content usin 20 h studying of course content usin 80 h studying of course content thro	ng literarture (self-study) hugh exercises / case studies (self-study)	
20 h studying of course content usin 20 h studying of course content usin 80 h studying of course content thro 60 h lecture and exercise course (at Conditions:	ng literarture (self-study) hugh exercises / case studies (self-study)	
20 h studying of course content usin 20 h studying of course content usin 80 h studying of course content thro 60 h lecture and exercise course (at Conditions:	ng literarture (self-study) hugh exercises / case studies (self-study)	
20 h studying of course content usir 20 h studying of course content usir	ng literarture (self-study) hugh exercises / case studies (self-study)	Minimal Duration of the Module: 1 semester[s]
20 h studying of course content usir 20 h studying of course content usir 80 h studying of course content thro 60 h lecture and exercise course (at Conditions: Basics in solid state physics	ng literarture (self-study) pugh exercises / case studies (self-study) ttendance) Recommended Semester:	Minimal Duration of the Module:
20 h studying of course content usir 20 h studying of course content usir 80 h studying of course content thro 60 h lecture and exercise course (at Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours:	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Minimal Duration of the Module:
20 h studying of course content usir 20 h studying of course content usir 30 h studying of course content thro 60 h lecture and exercise course (at Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours:	Iterarture (self-study) pugh exercises / case studies (self-study) Itendance) Recommended Semester: from 1. Repeat Exams Permitted:	Minimal Duration of the Module:
20 h studying of course content usir 20 h studying of course content usir 80 h studying of course content thro 60 h lecture and exercise course (at Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Minimal Duration of the Module:
20 h studying of course content usir 20 h studying of course content usir 80 h studying of course content thro 60 h lecture and exercise course (at Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
20 h studying of course content usin 20 h studying of course content usin 80 h studying of course content thro 60 h lecture and exercise course (at Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied Magn	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
20 h studying of course content usir 20 h studying of course content usir 20 h studying of course content thro 60 h lecture and exercise course (at Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied Magn Mode of Instruction: lecture	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
20 h studying of course content usir 20 h studying of course content usir 20 h studying of course content usir 80 h studying of course content thro 60 h lecture and exercise course (at Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied Magn Mode of Instruction: lecture Language: English	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
20 h studying of course content usir 20 h studying of course content usir 20 h studying of course content thro 60 h lecture and exercise course (at Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied Magn Mode of Instruction: lecture Language: English Contact Hours: 3	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
20 h studying of course content usir 20 h studying of course content usir 20 h studying of course content usir 80 h studying of course content thro 60 h lecture and exercise course (at Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied Magn Mode of Instruction: lecture Language: English	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
20 h studying of course content usin 20 h studying of course content usin 80 h studying of course content thro 60 h lecture and exercise course (at Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied Magn Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome: see module description	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
20 h studying of course content usin 20 h studying of course content usin 80 h studying of course content thro 60 h lecture and exercise course (at Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied Magn Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
20 h studying of course content usin 20 h studying of course content usin 80 h studying of course content thro 60 h lecture and exercise course (at Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied Magn Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome: see module description Contents:	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:

Part of the Module: Applied Magnetic Materials and Methods (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Applied Magnetic Materials and Methods

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Applied Magnetic Materials and Methods

Module PHM-0052: Solid Sta Radiation and Neutrons	te Spectroscopy with Synchrotron	6 ECTS/LP
Solid State Spectroscopy with Sy	nchrotron Radiation and Neutrons	
Version 1.0.0 (since WS09/10)		
Person responsible for module: P	rof. Dr. Christine Kuntscher	
Contents:		
-	ру	meter, interferometer [2]
Learning Outcomes / Competer	oces:	
The students:		
 have acquired the skills of f the field of solid state spect 	al with current problems in solid state spectro methods for application.	spectroscopy and can apply these in
Workload:		
Total: 180 h 20 h studying of course content u 20 h studying of course content u 60 h lecture and exercise course	sing provided materials (self-study)	
Conditions:		
basic knowledge in solid-state phy	ysics	
Frequency: annually	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Solid State Mode of Instruction: lecture Language: English Contact Hours: 3	Spectroscopy with Synchrotron Radiation	and Neutrons
Learning Outcome: see module description		

Contents:

see module description

Literature:

- H. Kuzmany, Solid State Spectroscopy (Springer)
- N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston)
- J. M. Hollas, Modern Spectroscopy

Assigned Courses:

Solid State Spectroscopy with Synchrotron Radiation and Neutrons (lecture)

Part of the Module: Solid State Spectroscopy with Synchrotron Radiation and Neutrons (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Solid State Spectroscopy with Synchrotron Radiation and Neutrons (Tutorial) (exercise course)

Examination

Solid State Spectroscopy with Synchrotron Radiation and Neutrons

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Solid State Spectroscopy with Synchrotron Radiation and Neutrons

Module PHM-0051: Biophysi Biophysics and Biomaterials	cs and Biomaterials	6 ECTS/LP
Version 1.0.0 (since WS09/10) Person responsible for module: D	r. Stefan Thalhammer	
Contents: • Radiation Biophysics • Microfluidics • Membranes • Membranal transport		
Learning Outcomes / Competer The students:	ices:	
 learn models of the (bio)poly neuronal networks, adapt skills in the independent translate a biological oberset Integrated acquirement of statement of statement	and phenomena of biological physics, ymer-theory, microfluidic, radiation biophys ent processing of problems and deal with co ervation into a physical question. oft skills: autonomous working with speciali pacity for teamwork, ability to document ex	urrent literature. They will be able to st literature in english, acquisition of
	sing provided materials (self-study) rough exercises / case studies (self-study)	
Conditions: Mechanics, Thermodynamics, Sta Molecular Biology	tistical Physics, basic knowledge in	
Frequency: each semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Biophysics Mode of Instruction: lecture Language: English Contact Hours: 3	and Biomaterials	
Learning Outcome: see module description		

Contents:
 Radiation Biophysics Radiation sources Interaction of radiation with biological matter Radiation protection principles Low dose radiation LNT model in radiation biophysics Microfluidics Life at Low Reynolds Numbers The Navier-Stokes Equation Low Reynolds Numbers – The Stokes Equation Breaking the Symmetry
Membranes
 Thermodynamics and Fluctuations Thermodynamics of Interfaces Phase Transitions – 2 state model Lipid membranes and biological membranes, membrane elasticity Membranal transport
 Random walk, friction and diffusion Transmembranal ionic transport and ion channels Electrophysiology of cells Neuronal Dynamics
 Literature: T. Herrmann, Klinische Strahlenbiologie – kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1 J. Freyschmidt, Handbuch diagnostische Radiologie – Strahlenphysik, Strahlenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3 S. Haeberle, R. Zengerle, Microfluidic platforms for lab-on-a-chip applications, Lab-on-a-chip, 2007, 7, 1094-1110 J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9 lecture notes
Assigned Courses:
Biophysics and Biomaterials (lecture)
Part of the Module: Biophysics and Biomaterials (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 1 Assigned Courses:
Biophysics and Biomaterials (Tutorial) (exercise course)
Examination

Biophysics and Biomaterials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Biophysics and Biomaterials

Module PHM-0160: Dielectric and Dielectric and Optical Materials	d Optical Materials	6 ECTS/LP
Version 1.1.0 (since SoSe15) Person responsible for module: Prof. D	or. Joachim Deisenhofer	
Contents: Optical materials:		
absorption) • Anisotropic media, linear optics		
measurementsDynamic processes in dielectric	ies, broadband dielectric spectroscopy, i materials: relaxation processes, phenom d matter: liquids, glasses, plastic crystals	enological models
 Maxwell-Wagner relaxations: equinaterials 	uctivity, universal dielectric response, ion uivalent-circuits, applications (supercapa ties, polarization, relaxor ferroelectrics, a ns, materials, applications	citors), colossal-dielectric-constant
	ectromagnetic wave propagation and hav omena. They are able to analyze materia	-
Remarks: Elective compulsory module		
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using l 80 h studying of course content throug 20 h studying of course content using p	iterarture (self-study) h exercises / case studies (self-study)	
Conditions: Basic knowledge of solid state physics		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Dielectric and Optical Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

Mark Fox, Optical Properties of Solids, Oxford Master Series

Assigned Courses:

Dielectric and Optical Materials (lecture)

Examination

Dielectric and Optical Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Dielectric and Optical Materials

Module PHM-0059: Magnetism Magnetism	1	6 ECTS/LP
Version 1.0.0 (since WS09/10)		
Person responsible for module: Dr.	Hans-Albrecht Krug von Nidda	
Contents:		
 History, basics 		
Magnetic moments, classical	and quantum phenomenology	
 Exchange interaction and mean 	an-field theory	
 Magnetic anisotropy and mag 		
Thermodynamics of magnetic		
Magnetic domains and domai		
Magnetization processes and	micro magnetic treatment	
 AC susceptibility and ESR Spintransport / spintronics 		
 Recent problems of magnetisi 	m	
Learning Outcomes / Competence		
The students:	5.	
for their description, like mearhave the ability to classify different interpretation, and	I phenomena of magnetic materials and the n-field theory, exchange interactions and mi erent magnetic phenomena and to apply the ndently to treat fundamental and typical topi t skills.	cro magnetic models, e corresponding models for their
Total: 180 h 60 h lecture and exercise course (at 80 h studying of course content thro 20 h studying of course content usir 20 h studying of course content usir	nugh exercises / case studies (self-study) ng literarture (self-study)	
Conditions:		
basics of solid-state physics and qua	antum mechanics	
Frequency: annually	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
4	according to the examination regulations of the study program	
4 Parts of the Module		
Parts of the Module		
Parts of the Module Part of the Module: Magnetism		
Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture		
Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture Language: English		
Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture Language: English Contact Hours: 3		
Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:		

- D. H. Martin, Magnetism in Solids (London Iliffe Books Ltd.)
- J. B. Goodenough, Magnetism and the Chemical Bond (Wiley)
- P. A. Cox, Transition Metal Oxides (Oxford University Press)
- C. Kittel, Solid State Phyics (Wiley)
- D. C. Mattis, The Theory of Magnetism (Wiley)
- G. L. Squires, Thermal Neutron Scattering (Dover Publications Inc.)

Assigned Courses:

Magnetism (lecture)

Part of the Module: Magnetism (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Magnetism (Tutorial) (exercise course)

Examination

Magnetism

written exam / length of examination: 90 minutes

Examination Prerequisites:

Magnetism

Module PHM-0048: Physics and	Technology of Semiconductor	6 ECTS/LP
Devices Physics and Technology of Semicondu	uctor Devices	
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof. D	Dr. Hubert J. Krenner	
Contents:	_	
 Basic properties of semiconductor Semiconductor diodes and trans Semiconductor technology 	ors (electronic bandstructure, doping, car istors	rier excitations and carrier transport)
 excitations, and carrier transport Application of developed concept semiconductors. Application of these concepts to such as diodes and transistors Knowledge of the technologically Integrated acquisition of soft skill 	nd semiconductor physics such as electr	describe the basic properties of principles of semiconductor devices ductor micro- and nanofabrication. erature in English, acquisition of
Total: 180 h 20 h studying of course content using p 20 h studying of course content using l 80 h studying of course content throug 60 h lecture and exercise course (atter Conditions:	iterarture (self-study) h exercises / case studies (self-study)	
recommended prerequisites: basic kno physics and quantum mechanics.	wledge in solid state physics, statistical	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Physics and Tec Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	hnology of Semiconductor Devices	
see module description		
Contents: see module description		

- Yu und Cardona: Fundamentals of Semiconductors (Springer)
- Sze: Physics of Semiconductor Devices (Wiley)
- Sze: Semiconductor Devices (Wiley)
- Madelung: Halbleiterphysik (Springer)
- Singh: Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)

Part of the Module: Physics and Technology of Semiconductor Devices (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Contents:

see module description

Examination

Physics and Technology of Semiconductor Devices

written exam / length of examination: 90 minutes

Examination Prerequisites:

Physics and Technology of Semiconductor Devices

Module PHM-0049: Nanostructur Nanostructures / Nanophysics	es / Nanophysics	6 ECTS/LP
Version 1.1.0 (since WS09/10) Person responsible for module: Prof. D	r. Hubert J. Krenner	
2. Magnetotransport in low-dimensi	rires and dots, low dimensional electron onal systems, Quanten-Hall-Effect, Qua ells and quantum dots and their application	ntized conductance
 Profound knowledge of low-dime novel functional devices for high- Knowledge of different fabrication Application of these concepts to Integrated acquirement of soft sk 	ntal concepts in modern nanoscale scier nsional semiconductor structures and ho frequency electronics and optoelectronic n approaches using bottom-up and top-d tackle present problems in nanophysics iills: autonomous working with specialist y for teamwork, ability to document expe	ow these systems can be applied for cs lown techniques literature in English, acquisition of
Workload: Total: 180 h 80 h studying of course content through 20 h studying of course content using h 60 h lecture and exercise course (atten 20 h studying of course content using p Conditions: recommended prerequisites: basic kno	iterarture (self-study) idance) provided materials (self-study)	
quantum mechanics.		
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Nanostructures / Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4	/ Nanophysics	
Learning Outcome: see module description		
Contents: see module description		

- Yu und Cardona: Fundamentals of Semiconductors
- Singh:Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)
- Davies: The Physics of low-dimensional Semiconductors (Cambridge University Press)

Examination

Nanostructures / Nanophysics

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Nanostructures / Nanophysics

Module PHM-0054: Chemical Ph	ysics II	6 ECTS/LP
Chemical Physics II		
Version 1.3.0 (since WS09/10)		-
Person responsible for module: Prof. I	Dr. Wolfgang Scherer	
PD Dr. Georg Eickerling		_
Contents:		
 Introduction to computational ch 	emistry	
 Hartree-Fock Theory 		
DFT in a nutshell		
Prediction of reaction mechanisr		
calculation of physical and chem	nical properties	
Learning Outcomes / Competences The students:		
 know the basic quantum chemic 	al methods of chemical physics to interp	ret the electronic structures in
molecules and solid-state compo	bunds,	
 have therefore the competence 	to autonomously perform simple quantur	n chemical calculations using Hartree-
Fock and Density Functional The	eory (DFT) and to interpret the electronic	structure of functional molecules and
materials with regard to their che	emical and physical properties	
	kills: ability to specialize in a scientific top	pic and to apply the acquired knowledge
for solving scientific problems.		
Remarks:		
It is possible for students to do quantu	m chemical calculations autonomously a	nd analyze electronical structures of
molecules on a computer cluster within	n the scope of the tutorial.	
Workload:		
Total: 180 h		
60 h lecture and exercise course (atter	•	
80 h studying of course content throug		
20 h studying of course content using		
20 h studying of course content using	provided materials (self-study)	
Conditions:		
It is highly recommended to complete	the module Chemical Physics I first.	
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Chemical Physic		
	63 II	
Mode of Instruction: lecture		

see module description

- I. N. Levine, Quantum Chemistry, Pearson, 7th ed 2013.
- A. Szabo, N. S. Ostlund, Modern Quantum Chemistry, Dover, **1996** (EbookCentral ebook).
- E. G. Lewars, Computational Chemistry, Springer, 2011.
- D. C. Young, Computational Chemistry: A practical guide for applying techniques to real world problems, Wiley ebook, **2002**.
- R. A. van Santen, Ph. Sautet, Computational Methods in Catalysis and Materials Science, Wiley ebook, 2009.
- P. Popelier, Atoms in Molecules: An Introduction, Pearson Education Limited, 2000.
- A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc. Pittsburg, PA.

Assigned Courses:

Chemical Physics II (lecture)

Part of the Module: Chemical Physics II (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see module description

Assigned Courses:

Chemical Physics II (Tutorial) (exercise course)

Examination

Chemical Physics II

written exam / length of examination: 90 minutes

Examination Prerequisites:

Chemical Physics II

Coordination Materials	Materials	6 ECTS/LF
Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof. D Dr. Hana Bunzen	r. Dirk Volkmer	
Contents:		
A) Basics of coordination Chemistry		
 Historical development of coordin Structures and nomenclature rule Chemical bonds in transition metal Stability of transition metal coord Characteristic reactions [3] 	es [2] al coordination compounds [3]	
B) Selected classes of functional mater	rials	
 Bioinorganic chemistry [3] Coordination polymers / metal-or Coordination compounds in med Photochemistry of coordination compounds 	ical applications [3]	
Learning Outcomes / Competences: The students		
coordination compounds,	pret UV/vis absorption spectra and to coordination chemistry onto topics of kills.	
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using I 20 h studying of course content using p	iterarture (self-study)	
80 h studying of course content throug		
Conditions: Recommended: The lecture course is h	based on the courses "Chemistry I",	
80 h studying of course content throug Conditions: Recommended: The lecture course is b "Chemistry II" Frequency: each summer semester	based on the courses "Chemistry I", Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]

Part of the Module: Coordination Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 3

- Joan Ribas Gisbert, Coordination Chemistry, Wiley-VCH
- Lutz H. Gade, Koordinationschemie, Wiley-VCH
- · As well as selected reviews and journals articles cited on the slides

Assigned Courses:

Coordination Materials (lecture)

Part of the Module: Coordination Materials (Tutorial)

Mode of Instruction: exercise course Language: English

Contact Hours: 1

Assigned Courses:

Coordination Materials (Tutorial) (exercise course)

Examination

Coordination Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Coordination Materials

Module PHM-0113: Advanced So	blid State Materials	6 ECTS/LP
Advanced Solid State Materials		
Version 1.0.0 (since WS10/11)		
Person responsible for module: Prof. D	Dr. Henning Höppe	
Contents:		
Repitition of concepts		
 Novel silicate-analogous materia Luminescent materials 	IIS	
 Pigments 		
 Heterogeneous catalysis 		
Learning Outcomes / Competences:		
	ations between composition, structures	and properties of functional materials,
	erties of chemical compounds, based on	
 gain competence to evaluate the 	potential of functional materials for futu	re technological developments, and
 will know how to measure the pro- 	•	
 Integrated acquirement of soft sk 	kills	
Workload:		
Total: 180 h		
60 h lecture and exercise course (atter	-	
20 h studying of course content using I		
80 h studying of course content throug 20 h studying of course content using p		
		1
Conditions:		
Contents of the modules Chemie I, and		
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis	ssenschaften)	Minimal Duration of the Medules
Contents of the modules Chemie I, and	ssenschaften) Recommended Semester:	Minimal Duration of the Module:
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester	ssenschaften) Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours:	Recommended Semester: from 2. Repeat Exams Permitted:	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours:	Recommended Semester: from 2. Repeat Exams Permitted:	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours:	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome:	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome:	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description Contents:	Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description Contents: see module description Literature: • A. West, Solid State Chemist	ssenschaften) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program State Materials try and Its Applications	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description Contents: see module description Literature: • A. West, Solid State Chemist • L. Smart, E. Moore, Solid State	ssenschaften) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program State Materials try and Its Applications ate Chemistry	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description Contents: see module description Literature: • A. West, Solid State Chemist	ssenschaften) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program State Materials try and Its Applications ate Chemistry	
Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description Contents: see module description Literature: • A. West, Solid State Chemist • L. Smart, E. Moore, Solid State	ssenschaften) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program State Materials try and Its Applications ate Chemistry	

Examination

Advanced Solid State Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Advanced Solid State Materials

сору	ods in Solid State NMR Spectro-	6 ECTS/L
Novel Methods in Solid State NMR S	pectroscopy	
/ersion 1.0.0 (since SoSe17)		
Person responsible for module: Prof.	Dr. Leo van Wüllen	
Contents:		
he physical basis of nuclear magnet		
Pulsed NMR methods; Fourier Transf	form NMR	
nternal interactions		
lagic Angle Spinning		
Nodern pulse sequences or how to o	btain specific information about the stru	cture and dynamics of solid materials
Recent highlights of the application of	f modern solid state NMR in materials s	science
Vorkload:		
otal: 180 h		
Conditions:		Credit Requirements:
ione		Bestehen der Modulprüfung
requency: each summer semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
Ļ	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Novel Methods	in Solid State NMR Spectroscopy	
Node of Instruction: lecture		
.anguage: German Contact Hours: 3		
Assigned Courses:		
Novel Methods in Solid State NMR	Spectroscopy (lecture)	
	in Solid State NMR Spectroscopy (T	utorial)
Node of Instruction: exercise course	9	
.anguage: German Contact Hours: 1		
iterature:		
1. M. H. Levitt, Spin Dynamics, Jo	hn Wiley and Sons. Ltd., 2008.	
2. H. Günther, NMR spectroscopy	•	
	tate NMR spectroscopy, Blackwell Pub	lishing Ltd., 2004.
4. D. Canet: NMR - concepts and	methods, Springer, 1994.	
Assigned Courses:		
level Methode in Colid State NMD	Spectroscopy (Tutorial) (exercise co	urse)
Novel methods in Solid State Nimk		

written exam / length of examination: 90 minutes

Module PHM-0167: Oxidation and Corrosion Oxidation and Corrosion	6 ECTS/LP
Version 1.0.0 (since SoSe15)	
Person responsible for module: Prof. Dr. Ferdinand Haider	
Contents:	
Introduction	
Review of thermodynamics	
Chemical equilibria	
Electrochemistry	
Electrode kinetics	
High temperature oxidation	
Localized corrosion	
 Shallow pit corrosion Pitting corrosion Crevice corrosion Intercrystalline corrosion Stress corrosion cracking Fatigue corrosion Erosion corrosion Galvanic corrosion 	
Water and seawater corrosion	
Corrosion monitoring	
Corrosion properties of specific materials	
Specific corrosion problems in certain branches	
Oil and Gas industryAutomobile industryFood industry	
Corrosion protection	
 Passive layers Reaction layers (Diffusion layers) Coatings (organic, inorganic) Cathodic, anodic protection Inhibitors 	
Learning Outcomes / Competences: The students: • know the the fundamental basics, mechanics, and types of corrosion pr	ocesses,
obtain specific knowledge of one type of corrosion.	
Workload: Total: 180 h 60 h lecture and exercise course (attendance) 120 h studying of course content using provided materials (self-study)	
Conditions: Recommended: good knowledge in materials science, basic knowledge in physical chemistry	Credit Requirements: written exam (90 min)

Frequency: each winter semester	Recommended Semester: from 3.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Oxidation and Corrosion

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

Schütze: Corrosion and Environmental Degradation

Part of the Module: Oxidation and Corrosion (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Oxidation and Corrosion

written exam / length of examination: 90 minutes

Examination Prerequisites:

Oxidation and Corrosion

Module PHM-0164: Characteriza Characterization of Composite Materi	and the second	6 ECTS/LF
Version 1.0.0 (since SoSe15) Person responsible for module: Prof.	Dr. Markus Sause	
Contents:		
The following topics are presented:		
Introduction to composite mate	rials	
 Applications of composite mate 	rials	
 Mechanical testing 		
 Thermophysical testing 		
Nondestructive testing		
Learning Outcomes / Competences	5: 	
The students:		
are introduced to important con		omposite materials. d material models applied to composites. opic using various forms of information.
Workload:		
Total: 180 h		
20 h studying of course content using	literarture (self-study)	
20 h studying of course content using		
60 h lecture and exercise course (atte	-	
80 h studying of course content throu	gh exercises / case studies (self-study	()
Conditions: Recommended: basic knowledge in r composite materials	naterials science, particularly in	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module	,	1

Part of the Module: Characterization of Composite Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- Morgan: Carbon fibers and their composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe
- Dowling: Mechanical behaviour of materials
- Issler: Festigkeitslehre Grundlagen
- Landau, Lifschitz: Theoretische Physik Vol. 7

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Assigned Courses:

Characterization of Composite Materials (lecture)

Part of the Module: Characterization of Composite Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Assigned Courses:

Characterization of Composite Materials (Tutorial) (exercise course)

Examination

Characterization of Composite Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Characterization of Composite Materials

Conditions: Recommended: basic knowledge in r organic chemistry Frequency: each winter semester Contact Hours: 4	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module: 1 semester[s]
Recommended: basic knowledge in r organic chemistry Frequency: each winter semester	Recommended Semester: from 1.	
Recommended: basic knowledge in r organic chemistry		
Workload: Total: 180 h 80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte	provided materials (self-study)	
	chemical properties of fibers, matrices, ar ire further knowledge of the scientific topi	
 know the application areas of c know the basics of production t materials. 	omposite materials. echnologies of fibers, polymeric, and cera	amic matrices and fiber reinforced
Learning Outcomes / Competences The students:	S:	
	es of fibers and their precursor materials es of commonly used polymeric and cera gies	mic matrix materials
Contents: The following topics are treated:		
Person responsible for module: Prof. Frau Dr. Judith Moosburger-Will	Dr. Siegfried Horn	
Version 1.0.0 (since SoSe15)	ssing and Materials Properties	

Language: English Contact Hours: 3

- · Morgan: Carbon fibers and their composites
- Ehrenstein: Polymeric materials
- Krenkel: Ceramic Matrix Composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunstoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe

Further litrature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Examination

Fiber Reinforced Composites: Processing and Materials Properties

written exam / length of examination: 90 minutes

Examination Prerequisites:

Fiber Reinforced Composites: Processing and Materials Properties

Module PHM-0165: Introduction		6 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D Dr Ing. Johannes Schilp	or. Siegfried Horn	,
Contents:		
The following topics are treated:		
 Statics and dynamics of objects Transmissions and mechanisms Tension, shear and bending mor Hydrostatics Hydrodynamics Strength of materials and solid m Instrumentation and measureme Mechanical design (including kin 	nechanics nt	
Learning Outcomes / Competences: The students understand and are able Engineering applications Mechanical testing Instrumentation Mechanical design 		d materials science to:
Workload: Total: 180 h		
Conditions: none		
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Mechanical Engi Mode of Instruction: lecture Language: English Contact Hours: 3	neering	
Part of the Module: Mechanical Engi Mode of Instruction: exercise course Language: English Contact Hours: 1	neering (Tutorial)	

Examination

Introduction to Mechanical Engineering

written exam / length of examination: 90 minutes

Examination Prerequisites:

Introduction to Mechanical Engineering

	Polymers	6 ECTS/L
Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof. I	Dr. Klaus Ruhland	
Contents:		
 Introduction to polymer science 		
 Elastomers and elastoplastic matrix 	aterials	
 Memory-shape polymers 		
 Piezoelectric polymers 		
 Electrically conducting polymers 		
 Ion-conducting polymers 		
 Magnetic polymers 		
 Photoresponsive polymers 		
 Polymers with second order non 	linear optical properties	
 Polymeric catalysts 		
 Self-healing polymers 		
 Polymers in bio sciences> 		
Total: 180 h		
20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using	h exercises / case studies (self-study) literarture (self-study)	
Total: 180 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atten Conditions:	h exercises / case studies (self-study) literarture (self-study)	
20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atten Conditions:	yh exercises / case studies (self-study) literarture (self-study) ndance) 035 (Chemie I), PHM-0036 (Chemie II)	
20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atten Conditions: Recommended: Attendance to PHM-0 and MRM-0050 (Grundlagen der Polyr	yh exercises / case studies (self-study) literarture (self-study) ndance) 035 (Chemie I), PHM-0036 (Chemie II) merchemie und -physik) Recommended Semester:	Minimal Duration of the Module:
20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atten Conditions: Recommended: Attendance to PHM-0 and MRM-0050 (Grundlagen der Polyn Frequency: each summer semester	h exercises / case studies (self-study) literarture (self-study) ndance) 035 (Chemie I), PHM-0036 (Chemie II) merchemie und -physik) Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atten Conditions: Recommended: Attendance to PHM-0 and MRM-0050 (Grundlagen der Polyn Frequency: each summer semester Contact Hours:	<pre>gh exercises / case studies (self-study) literarture (self-study) ndance) 035 (Chemie I), PHM-0036 (Chemie II) merchemie und -physik) Recommended Semester: from 2. Repeat Exams Permitted:</pre>	
20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atten Conditions: Recommended: Attendance to PHM-0 and MRM-0050 (Grundlagen der Polyn Frequency: each summer semester Contact Hours:	h exercises / case studies (self-study) literarture (self-study) ndance) 035 (Chemie I), PHM-0036 (Chemie II) merchemie und -physik) Recommended Semester: from 2.	
20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atten Conditions: Recommended: Attendance to PHM-0	gh exercises / case studies (self-study) literarture (self-study) ndance) 035 (Chemie I), PHM-0036 (Chemie II) merchemie und -physik) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination	
20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atten Conditions: Recommended: Attendance to PHM-0 and MRM-0050 (Grundlagen der Polyn Frequency: each summer semester Contact Hours: 4	and the exercises / case studies (self-study) literarture (self-study) indance) 035 (Chemie I), PHM-0036 (Chemie II) merchemie und -physik) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atten Conditions: Recommended: Attendance to PHM-0 and MRM-0050 (Grundlagen der Polyn Frequency: each summer semester Contact Hours: 4 Parts of the Module	and the exercises / case studies (self-study) literarture (self-study) indance) 035 (Chemie I), PHM-0036 (Chemie II) merchemie und -physik) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	

Contact Hours: 3

Assigned Courses:

Functional Polymers (lecture)

Part of the Module: Functional Polymers (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Functional Polymers (Tutorial) (exercise course)

Examination

Functional Polymers

written exam / length of examination: 90 minutes

Examination Prerequisites:

Functional Polymers

Module PHM-0168: Modern Metal Modern Metallic Materials	lic Materials	6 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D	r. Ferdinand Haider	
Contents: Introduction		
Review of physical metallurgy		
Steels:		
 principles common alloying elements martensitic transformations dual phase steels TRIP and TWIP steels maraging steel electrical steel production and processing 		
Aluminium alloys:		
 2xxx 6xxx 7xxx Processing – creep forming, hydr 	oforming, spinforming	
Titanium alloys		
Magnesium cast alloys		
Superalloys		
Intermetallics, high entropy alloys		
Copper, brass, bronzes		
Metallic glasses		
Alloy design		
Learning Outcomes / Competences: Students	tallic alloys, their properties and how the	ese properties can be derived from
basic concepts		
Workload: Total: 180 h 60 h lecture and exercise course (atten 20 h studying of course content using p 20 h studying of course content using li 80 h studying of course content through	rovided materials (self-study) terarture (self-study)	
Conditions: Recommended: Knowledge of physical		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]

Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Modern Metallic	Materials	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 4		
Literature:		
Cahn-Haasen-Kramer: Materials S	cience and Technology	
Original literature		
Assigned Courses:		
Modern Metallic Materials (lecture)		
Examination		
Modern Metallic Materials		
written exam / length of examinatio	n: 90 minutes	

Examination Prerequisites:

Modern Metallic Materials

Module PHM-0196: Surfaces and	Interfaces II: Joining processes	6 ECTS/LP
Surfaces and Interfaces II: Joining proc	esses	
Version 1.1.0 (since WS15/16)		
Person responsible for module: Prof. D	-	
Dozenten: Prof. Dr. Siegfried Horn, Dr.	Judith Moosburger-Will	
Learning Outcomes / Competences: The students		
- know the application areas of compos	ite materials	
- know the basics of cohesion and adhe		
- know the basics of joining techniques		
- are introduced to physical and chemic	al properties metal-metal, metal-polyme	r and polymer-polymer interfaces
- Are able to independently acquire furt	her knowledge of the scientific topic usir	ng various forms of information.
Workload: Total: 180 h		
Conditions:		Credit Requirements:
Basic knowledge on materials science,	lecture "Surfaces and Interfaces I"	Bestehen der Modulprüfung
Module Surfaces and Interfaces (PHM-		
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted: any	
Parts of the Module		
Part of the Module: Surfaces and Inte	erfaces II: Joining processes	
Mode of Instruction: lecture Lecturers: Prof. Dr. Siegfried Horn		
Language: German		
Contact Hours: 3		
Contents:		
The following topics are treated:		
- Introduction to adhesion		
- Role of surface and interface prop	erties	
- Introduction to interactions at surfa		
- Adhesion theories		
- Surface and interface energy		
- Surface treatment techniques		
- Joining techniques		
- Physical and chemical properties of	of joints	
- Applications		
Literature:		
Literature, including actual scientific	papers and reviews, will be announced	at the beginning of the lecture.
Assigned Courses:		
Surfaces and Interfaces II: Joining p	rocesses (lecture)	

Examination

Surfaces and Interfaces II: Joining processes

written exam / length of examination: 90 minutes

Examination Prerequisites:

Surfaces and Interfaces II: Joining processes

Parts of the Module

Part of the Module: Übung zu Surfaces and Interfaces II: Joining processes

Mode of Instruction: exercise course

Language: German

Contact Hours: 1

Assigned Courses:

Übung zu Surfaces and Interfaces II: Joining processes (exercise course)

Non-Destructive Testing	ictive Testing	6 ECTS/LP
Version 1.0.0 (since WS14/15)		
Person responsible for module: Prof.	. Dr. Markus Sause	
Contents:		
Introduction to nondestructive	testing methods	
 Visual inspection 		
Ultrasonic testing		
Guided wave testing		
Acoustic emission analysisThermography		
Radiography		
 Eddy current testing 		
Specialized nondestructive me	ethods	
Learning Outcomes / Competence	es:	
The students		
 acquire knowledge in the field 	of nondestructive evaluation of material	S,
	ncepts in nondestructive measurement t	-
	uire further knowledge of the scientific to	pic using various forms of information.
Integrated acquirement of soft	SKIIIS	
Workload: Total: 180 h		
60 h lecture and exercise course (at	tendance)	
20 h studying of course content usin	-	
20 h studying of source contact		
20 In studying or course content usin	g provided materials (self-study)	
	g provided materials (self-study) ugh exercises / case studies (self-study)	·
80 h studying of course content through	ugh exercises / case studies (self-study)	
80 h studying of course content thron Conditions: Basic knowledge on materials science	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester:	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science	ugh exercises / case studies (self-study)	
80 h studying of course content throu Conditions:	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted:	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours:	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted:	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4 Parts of the Module	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destruction Mode of Instruction: lecture	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destruction Mode of Instruction: lecture Language: English	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destruction Mode of Instruction: lecture Language: English Contact Hours: 3	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destruction Mode of Instruction: lecture Language: English	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destruction Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:

- Raj: Practical Non-destructive Testing
- Shull: Nondestructive Evaluation Theory and Applications
- Krautkrämer: Ultrasonic testing of materials
- Grosse: Acoustic Emission Testing
- Rose: Ultrasonic waves in solid media
- Maldague: Nondestructive Evaluation of Materials by Infrared Thermography
- Herman: Fundamentals of Computerized Tomography

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Part of the Module: Non-Destructive Testing (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Non-Destructive Testing

written exam / length of examination: 90 minutes

Examination Prerequisites:

Non-Destructive Testing

Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Conditions: Mechanics, Thermodynamics	1	Credit Requirements: Bestehen der Modulprüfung
	provided materials (self-study)	
 self-dependent working with Englishing presentation techniques. documentation of experimental r interdisciplinary thinking and working and working	esults.	
properties.learn about the impact of forceslearn physical description of fund	oerties of human cells, as building blocks on the behavior of living cells damental biological processes and prope questions and define model systems to a	erties of biomaterials.
Learning Outcomes / Competences The students	:	
 Thermodynamics of proteins and Physical methods and technique Cell adhesion – interplay of spece 	rial properties: cell membrane, organelles d biological membranes es for studying cells cific, universal and elastic forces f tissue - macromolecules of the extra cel of the cell as a biomaterial	
Physics of Cells	ells	

Language: English / German

Contact Hours: 2

Learning Outcome:

see module description

Contents:

see module description

Literature:

- Sackmann, Erich, and Rudolf Merkel. Lehrbuch der Biophysik. Wiley-VCH, 2010.
- Nelson, Philip. Biological physics. New York: WH Freeman, 2004.
- Boal, D. Mechanics of the Cell. Cambridge University Press, 2012.
- Lecture notes

Part of the Module: Physics of Cells (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 2

Learning Outcome:

see module description

Contents:

see module description

Literature:

see module description

Examination

Physics of Cells

oral exam / length of examination: 30 minutes

ensity maps from X-ray and
nsity maps from X-ray and
with the physical and chemical
imal Duration of the Module: mester[s]

Contact Hours: 3

- 1. C. Giacovazzo et al., Fundamentals of Crystallography, Oxford Univ. Press, 2011.
- 2. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford Univ. Press, 1997.
- 3. P. Popelier, Atoms in Molecules: An Introduction, Longman, 1999.
- 4. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford Univ. Press, 1997.
- 5. P. Popelier, Atoms in Molecules: An Introduction, Longman, 1999.

Assigned Courses:

Advanced X-ray and Neutron Diffraction Techniques (lecture)

Part of the Module: Advanced X-ray and Neutron Diffraction Techniques (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Advanced X-ray and Neutron Diffraction Techniques (Tutorial) (exercise course)

Examination

Advanced X-ray and Neutron Diffraction Techniques

written exam / length of examination: 90 minutes

Examination Prerequisites:

Advanced X-ray and Neutron Diffraction Techniques

	Course: Electronics for Physicists	8 ECTS/LF
Method Course: Electronics for	Physicists and Materials Scientists	
Version 1.0.0 (since SoSe15)		
Person responsible for module:	Andreas Hörner	
Contents:		
1. Basics in electronic and el	lectrical engineering [4]	
2. Quadrupole theory [2]		
3. Analog technique, transist		
4. Boolean algebra and logic		
5. Digital electronics and cal		
6. Microprocessors and Netv	vorks [4]	
7. Basics in Electronic [8]	ere [0]	
 8. Implementation of transist 9. Operational amplifiers [8] 	ors [8]	
10. Digital electronics [8]		
11. Practical circuit arrangeme	ent [8]	
Learning Outcomes / Compete The students:	ences:	
laboratory, have skills in easy circuit of 	design, measuring and control technology, a	nalog and digital electronics,
nave expertise in indepen-	dent working on circuit problems. They can o	
Remarks:		
	DULE	
ELECTIVE COMPULSORY MO	DULE se: Electronics for Physicists and Materi	als Scientists (combined lab course
ELECTIVE COMPULSORY MO Attendance in the Method Cour		-
ELECTIVE COMPULSORY MO Attendance in the Method Cour	se: Electronics for Physicists and Materia	-
ELECTIVE COMPULSORY MO Attendance in the Method Cour AND lecture) excludes credit po	se: Electronics for Physicists and Materia	-
ELECTIVE COMPULSORY MO Attendance in the Method Cour AND lecture) excludes credit po Workload: Total: 240 h	rse: Electronics for Physicists and Materia pints for the lecture Electronics for Physicis	-
ELECTIVE COMPULSORY MO Attendance in the Method Cour AND lecture) excludes credit po Workload: Total: 240 h 100 h lecture and exercise cours	rse: Electronics for Physicists and Materia pints for the lecture Electronics for Physicis	-
ELECTIVE COMPULSORY MO Attendance in the Method Cour AND lecture) excludes credit po Workload: Total: 240 h 100 h lecture and exercise cours	se (attendance)	-
ELECTIVE COMPULSORY MO Attendance in the Method Cour AND lecture) excludes credit po Workload: Total: 240 h 100 h lecture and exercise cours 140 h studying of course conten Conditions:	se (attendance)	sts and Materials Scientists.
ELECTIVE COMPULSORY MO Attendance in the Method Cour AND lecture) excludes credit po Workload: Total: 240 h 100 h lecture and exercise cours 140 h studying of course conten Conditions: none	se (attendance)	sts and Materials Scientists.
ELECTIVE COMPULSORY MO Attendance in the Method Cour AND lecture) excludes credit po Norkload: Total: 240 h 100 h lecture and exercise course 140 h studying of course conten Conditions: hone	se: Electronics for Physicists and Materia bints for the lecture Electronics for Physicis se (attendance) t using provided materials (self-study)	Sts and Materials Scientists. Credit Requirements: written report (one per group)
ELECTIVE COMPULSORY MO Attendance in the Method Cour AND lecture) excludes credit po Workload: Total: 240 h 100 h lecture and exercise cours 140 h studying of course conten Conditions: none Frequency: each semester	Recommended Semester: from 1.	Sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module:
ELECTIVE COMPULSORY MO Attendance in the Method Cour AND lecture) excludes credit po Workload: Total: 240 h 100 h lecture and exercise cours 140 h studying of course conten Conditions: none Frequency: each semester Contact Hours:	Recommended Semester: from 1. Repeat Exams Permitted:	Sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module:
ELECTIVE COMPULSORY MO Attendance in the Method Cour AND lecture) excludes credit po Workload: Total: 240 h 100 h lecture and exercise cours 140 h studying of course conten Conditions: none Frequency: each semester Contact Hours:	rse: Electronics for Physicists and Materia bints for the lecture Electronics for Physicis se (attendance) t using provided materials (self-study) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module:
ELECTIVE COMPULSORY MO Attendance in the Method Cour AND lecture) excludes credit po Workload: Total: 240 h 100 h lecture and exercise cours 140 h studying of course conten Conditions: none Frequency: each semester	Recommended Semester: from 1. Repeat Exams Permitted:	Sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module:
ELECTIVE COMPULSORY MO Attendance in the Method Cour AND lecture) excludes credit po Workload: Total: 240 h 100 h lecture and exercise cours 140 h studying of course conten	rse: Electronics for Physicists and Materia bints for the lecture Electronics for Physicis se (attendance) t using provided materials (self-study) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module:

Contact Hours: 4

Literature:

- Paul Horowitz: The Art of Electronics (Cambridge University Press)
- National Instruments: MultiSim software package (available in lecture)

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (lecture)

Part of the Module: Method Course: Electronics for Physicists and Materials Scientists (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 3

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (Practical Course) (internship)

Examination

Method Course: Electronics for Physicists and Materials Scientists

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Method Course: Electronics for Physicists and Materials Scientists

Module PHM-0147: Method Cour Method Course: Electron Microscopy	se: Electron Microscopy	8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. I	Dr. Ferdinand Haider	
Contents:		
 Scanning electron microscopy (\$ Transmission electron microscopy) 	-	
Learning Outcomes / Competences The students:	-	
lectures to teach the theoretical		
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h 90 h lecture and exercise course (atter 150 h studying of course content using		
Conditions: Recommended: knowledge of solid-sta	ate physics, reciprocal lattice	Credit Requirements: regular participation, oral presentation (10 min), written report (one report per group)
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English Contact Hours: 2	Electron Microscopy	

Contents:

SEM:

- 1. Layout of Electron Microscopes and Electron Optical Components
- 2. Electron Solid Interactions
- 3. Contrast Formation in Scanning Electron Microscopy (SEM)
- 4. SE/BSE contrast
- 5. Electron Back Scattering Diffraction (EBSD)
- 6. Analytical techniques
- 7. Special Applications of SEM

TEM:

- 1. TEM specimen preparation techniques
- 2. Components of a TEM, principle lens design, lens aberrations
- 3. Electron diffraction: fundamentals
- 4. Contrast formation at bright field, dark field, weak beam dark field, and many beam conditions, "chemical" imaging
- 5. Bright field, dark field, weak beam dark field imaging of dislocations
- 6. Kinematical theory of electron wave propagation in crystals
- 7. Howie Whelan equations, contrast of defects
- 8. High resolution TEM, lattice imaging of crystals
- 9. Advanced diffraction techniques: Kikuchi patterns, HOLZ lines and Convergent Beam Diffraction (CBED)
- 10. Image simulation
- 11. Analytical TEM: Electron energy loss spectroscopy & energy filtered TEM

Literature:

- D.B.Williams and C.B.Carter, Transmission Electron Microscopy, Plenum Press, New York/London, 1996
- M.A. Hirsch, A. Howie, R. Nicholson, D.W. Pashley, M.J. Whelan, Electron microscopy of thin crystals, Krieger Publishing Company, Malabar (Florida), 1977
- L. Reimer, Transmission electron microscopy, Springer Verlag, Berlin/Heidelberg/New York, 1984
- P.J. Goodhew, Thin foil preparation for electron microscopy, Elsevier, Amsterdam, 1985
- P.R. Buseck, J.M. Cowley, L. Eyring, High-resolution transmission electron microscopy, Oxford University Press, 1988
- E. Hornbogen, B. Skrotzki, Werkstoff-Mikroskopie, Springer Verlag, Berlin/Heidelberg/New York, 1995
- K. Wetzig, In situ scanning electron microscopy in materials research, Akad.-Verl., 1995
- J. I. goldstein, Scanning electron microscopy and x-ray microanalysis, Plenum Press, 1992
- L. Reimer, Scanning electron microscopy, Springer Verlag, 1985
- S. L. Flegler, J. W. Heckman, K. L. Klomparens, Elektronenmikroskopie, Spektrum, Akad. Verl., 1995

Assigned Courses:

Method Course: Electron Microscopy (lecture)

Part of the Module: Method Course: Electron Microscopy (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Electron Microscopy (Practical Course) (internship)

Examination Method Course: Electron Microscopy report Examination Prerequisites: Method Course: Electron Microscopy

Module PHM-0148: Method Cour Method Course: Optical Properties of		8 ECTS/LP
Version 1.2.0 (since SoSe15) Person responsible for module: Prof. [Dr. Joachim Deisenhofer	
Contents: Electrodynamics of solids		
Maxwell equationsElectromagnetic wavesRefraction and interference, Free	snel equations	
FTIR spectroscopy		
Fourier transformationMichelson-Morley and Genzel inSources and detectors	terferometer	
Terahertz Time Domain spectroscopy		
Generation of pulsed THz radiatGated detection, Austin switches		
Elementary excitations in solid materia	lls	
 Rotational-vibrational bands Infrared-active phonons Interband excitations Crystal-field excitations 		
Learning Outcomes / Competences: The students:		
	-	
Remarks:	-	
Workload: Total: 240 h 30 h studying of course content using 90 h studying of course content throug 30 h studying of course content using 90 h lecture and exercise course (atter	h exercises / case studies (self-study) literarture (self-study)	
Conditions:		Credit Requirements:
Recommended: basic knowledge in sc electrodynamics and optics	olid-state physics, basic knowledge in	written report
Frequency: each semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Method Course: Optical Properties of Solids

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

Mark Fox, Optical Properties of Solids, Oxford Master Series

Eugene Hecht, Optics, Walter de Gruyter

Assigned Courses:

Method Course: Optical Properties of Solids (lecture)

Part of the Module: Method Course: Optical Properties of Solids (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Optical Properties of Solids (Practical Course) (internship)

Examination

Method Course: Optical Properties of Solids report

Examination Prerequisites:

Method Course: Optical Properties of Solids

Module PHM-0149: Method Cour Method Course: Methods in Biophysic		8 ECTS/L
Version 1.0.0 (since SoSe15)	<u> </u>	
Person responsible for module: Dr. Ste	efan Thalhammer	
Contents:		
Unit radiation biophysics		
 Concepts in radiation protection Low-dose irradiation biophysics DNA repair dynamics of living ce Confocal scanning laser microsometry 	U	
Unit microfluidic		
Microfluidic systemsAccoustic driven microfluidicsCalculation of microfluidic proble	ems	
Unit analysis		
Learning Outcomes / Competences The students:		
technologies of microfluidic anal	immun-histochemical staining procedu confocal scanning microscopy, oblems on small length scales,	
Remarks: ELECTIVE COMPULSORY MODULE		
The course will partly take place at the	Heimnoitz Center Munich.	
Workload: Total: 240 h		
Conditions:		Credit Requirements:
Attendance of the lecture "Biophysics	and Biomaterials"	1 written lab report
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English	Methods in Biophysics	

Part of the Module: Method Course: Methods in Biophysics (Practical Course) Mode of Instruction: laboratory course Language: English Contact Hours: 4

Literature:

- T. Herrmann, Klinische Strahlenbiologie kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1
- J. Freyschmidt, Handbuch diagnostische Radiologie Strahlenphysik, Strah-lenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3
- S. Haeberle und R. Zengerle, Microfluidic platforms for lab-on-a-chip applica-tions, Lab-on-a-chip, 2007, 7, 1094-1110
- J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9
- Lecture notes

Examination

Method Course: Methods in Biophysics report

Examination Prerequisites:

Method Course: Methods in Biophysics

and Characterization Method Course: Porous Materials - S	rse: Porous Materials - Synthesis ynthesis and Characterization	8 ECTS/LF
Version 1.0.0 (since SoSe15) Person responsible for module: Prof.	Dr. Dirk Volkmer	
Contents: Synthesis of porous functional materia Frameworks)	als (e.g. aerogels, mesoporous silica mat	erials, zeolites, Metal-Organic
Characterization methods		
 Structure and composition (XRI Thermal analysis (TGA) Adsorption and diffusion (BET,) Catalytic properties (GC/MS, TF 	pore size distribution, pulse chemisorptio	n)
Learning Outcomes / Competences The students will learn how to	3:	
 use modern solid state preparat employ analytical methods dedition 	tion techniques (e.g. hydrothermal, solvo icated to porous materials.	thermal, microwave synthesis),
Remarks: ELECTIVE COMPULSORY MODULE	E	
Workload:		
Total: 240 h 120 h internship / practical course (att 80 h studying of course content throug 20 h studying of course content using	gh exercises / case studies (self-study) literarture (self-study)	
Total: 240 h 120 h internship / practical course (att 80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using Conditions:	gh exercises / case studies (self-study) literarture (self-study) provided materials (self-study)	Credit Requirements: written report (editing time 3 weeks) + written exam
Workload: Total: 240 h 120 h internship / practical course (att 80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using Conditions: Recommended: lecture Functional Pc	gh exercises / case studies (self-study) literarture (self-study) provided materials (self-study)	written report (editing time 3 weeks) +
Total: 240 h 120 h internship / practical course (att 80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using Conditions:	gh exercises / case studies (self-study) literarture (self-study) provided materials (self-study)	written report (editing time 3 weeks) + written exam Please note that final grade of the Method Course consists of the maximum point score of of the exam and the grade of the report of the practical part which are weighted

Part of the Module: Method Course: Porous Materials Synthesis and Characterization (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Examination

Method Course: Porous Materials Synthesis and Characterization

written exam / length of examination: 45 minutes

Examination Prerequisites:

Method Course: Porous Materials Synthesis and Characterization

Module PHM-0153: Method Cour ting Materials Method Course: Magnetic and Superce		8 ECTS/LF
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D	or. Philipp Gegenwart	
Contents: Methods of growth and characterization	n:	
Sample preparation (bulk materials and	d thin films), e.g.,	
arcmeltingflux-growthsputtering and evaporation		
Sample characterization, e.g.,		
 X-ray diffraction electron microscopy, scanning tu magnetic susceptibility, electrical specific heat 	• • • • • • • • • • • • • • • • • • • •	
Learning Outcomes / Competences: The students		
are trained in planning and perfolearn to evaluate and analyze the	, magnetic susceptibility, dc-conductivit rming complex experiments e collected data, are taught to work on p easurement results and their interpretati	problems in experimental solid state
Workload:		
Total: 240 h		
90 h lecture and exercise course (atter	-	
30 h studying of course content using p		
90 h studying of course content throug 30 h studying of course content using I		
Conditions: Recommended: basic knowledge in so mechanics		Credit Requirements: presentation and written report on the experiments (editing time 3 weeks, max. 30 pages)
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course:	Magnetic and Superconducting Mat	

Contact Hours: 2

Assigned Courses:

Method Course: Magnetic and Superconducting Materials (lecture)

Part of the Module: Method Course: Magnetic and Superconducting Materials (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Magnetic and Superconducting Materials (Practical Course) (internship)

Examination

Method Course: Magnetic and Superconducting Materials

Examination Prerequisites:

Method Course: Magnetic and Superconducting Materials

Module PHM-0154: Method Cou Spectroscopy Method Course: Modern Solid State I		8 ECTS/LP
Version 2.0.0 (since SoSe17) Person responsible for module: Prof.	Dr. Leo van Wüllen	
Contents: Physical foundations of NMR spectro	scopy	
Internal interactions in NMR spectros	сору	
Chemical shift interactionDipole interaction andQuadrupolar interaction		
Magic Angle Spinning techniques		
Modern applications of NMR in mater	ials science	
Experimental work at the Solid-State	NMR spectrometers, computer-aided an	alysis and interpretation of acquired data
 gain basic practical knowledge can under guidance plan, p characterization of advanced m 	ysical foundations of modern Solid-State of operating a solid-state NMR spectron perform, and analyze modern solid-state	neter,
Remarks: ELECTIVE COMPULSORY MODULI	E	
Workload: Total: 240 h 30 h studying of course content using 90 h studying of course content throu 30 h studying of course content using 90 h lecture and exercise course (atte	gh exercises / case studies (self-study) provided materials (self-study)	
Conditions:		Credit Requirements:
The attendance of the lecture "NOVE SPECTROSCOPY" is highly recomm	L METHODS IN SOLID STATE NMR ended.	Bestehen der Modulprüfung
Frequency: each semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course Mode of Instruction: seminar Language: English	: Modern Solid State NMR Spectrosco	ору

Contact Hours: 2

Literature:

- M. H. Levitt, spin Dynamics, John Wiley and Sons, Ltd., 2008.
- H. Günther NMR spectroscopy, Wiley, 2001.
- M. Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- D. Canet, NMR concepts and methods, Springer, 1994.

Part of the Module: Method Course: Modern Solid State NMR Spectroscopy (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Literature:

- 1. M. H. Levitt, Spin Dynamics, John Wiley and Sons, Ltd., 2008.
- 2. H. Günther, NMR spectroscopy, Wiley 2001.
- 3. M.Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- 4. D. Canet: NMR concepts and methods, Springer, 1994.

Examination

Method Course: Modern Solid State NMR Spectroscopy

report / work period for assignment: 2 weeks

Examination Prerequisites:

Method Course: Modern Solid State NMR Spectroscopy

Module PHM-0171: Method Cour Method Course: Coordination Materials		8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D Dr. Hana Bunzen	r. Dirk Volkmer	
Contents:		
diffraction) 3. Material composition and stability	tal complexes (thermal analysis, UV/vis / studies s (spin-crossover materials, oxygen-carry	
Learning Outcomes / Competences: The students will learn how to:		
synthesis conditions (Schlenk teo • characterize coordination compo	unds by selected analytical techniques, naterials based on organic / inorganic hy	
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h 20 h studying of course content using p 80 h studying of course content throug 20 h studying of course content using I 120 h lecture and exercise course (atte	h exercises / case studies (self-study) iterarture (self-study)	
Conditions: none		Credit Requirements: written report (protocols)
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4	Coordination Materials (Practical Cou e	irse)
Assigned Courses: Method Course: Coordination Mater	ials (Practical Course) (internship)	
Part of the Module: Method Course: Mode of Instruction: seminar Language: English	Coordination Materials (Seminar)	

Language: English

Contact Hours: 2

Literature:

- Chemical databases
- Primary literature

Assigned Courses:

Method Course: Coordination Materials (Seminar) (seminar)

Examination

Method Course: Coordination Materials (Seminar) seminar

Examination Prerequisites:

Method Course: Coordination Materials (Seminar)

ilicate-analogous 8 ECTS/L
ording to the topics:
inescence, UV/vis, FT-IR), thermal analysis
gous materials, (e.g. solid state reaction, sol-gel reaction, precipitation, g, inert conditions), al data,
(self-study) y) studies (self-study)
d State Materials" Credit Requirements: written report (protocol)
Gemester: Minimal Duration of the Module: 1 semester[s]
ermitted: xamination
als ope acco lumi nalo ues ucing rysta als (study ase s Solid ed S

Part of the Module: Method Course: Functional Silicate-analogous Materials (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 6

Learning Outcome:

The students will know how to:

- · develop functional materials based on silicate-analogous materials,
- apply classical and modern preparation techniques (e.g. solid state reaction, sol-gel reaction, precipitation, autoclave reactions, use of silica ampoules),
- work under non-ambient atmospheres (e.g. reducing, inert conditions),
- · solve and refine crystal structures from single-crystal data,
- · describe and classify these structures properly.

Contents:

Synthesis and characterization of functional materials according to the topics:

- 1. Silicate-analogous compounds
- 2. Luminescent materials / phosphors
- 3. Pigments
- 4. Characterization methods: XRD, spectroscopy (luminescence, UV/vis, FT-IR), thermal analysis

Assigned Courses:

Method Course: Functional Silicate-analogous Materials (Practical Course) (internship)

Examination

Method Course: Functional Silicate-analogous Materials

seminar

Examination Prerequisites:

Method Course: Functional Silicate-analogous Materials

Module PHM-0206: Method Cour under Pressure Method Course: Infrared Microspectros		8 ECTS/LP
Version 1.0.0 (since WS16/17) Person responsible for module: Prof. D	Dr. Christine Kuntscher	I
Contents: Electrodynamics of solids		
Maxwell equations and electromagnetic	c waves in matter	
Optical variables		
Theories for dielectric function:		
i. Free carriers in metals and semicond	luctors (Drude)	
ii. Interband absorptions in semiconduciii. Vibrational absorptionsiv. Multilayer systems	ctors and insulators	
FTIR microspectroscopy		
Components of FTIR spectrometers i. Light sources ii. Interferometers iii. Detectors		
Microscope components High pressure experiments Equipments	S	
Pressure calibration		
Experimental techniques under high pr i. IR spectroscopy ii. Raman scattering iii. Magnetic measurements iv. Transport measurements	essure	
Learning Outcomes / Competences:		
The students		
Learn about the basics of the light inter	raction with various materials and the fur	ndamentals of FTIR microspectroscopy,
Are introduced to the high pressure eq	uipments used in infrared spectroscopy,	
Learn to carry out infrared microspectro	oscopy experiments under pressure,	
Learn to analyze the measured optical	spectra.	
Workload: Total: 240 h		
Conditions:		Credit Requirements:
none		Written report
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure

Mode of Instruction: lecture

Language: German

Contact Hours: 2

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (lecture)

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure (Practical Course)

Mode of Instruction: laboratory course

Language: German

Contact Hours: 4

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (Practical Course) (internship)

Examination

Method Course: Infrared Microspectroscopy under Pressure report

Module PHM-0216: Method Cou	urse: Thermal Analysis	8 ECTS/LP
Method Course: Thermal Analysis		
Version 1.0.0 (since WS16/17)		
Person responsible for module: Prof.	Dr. Ferdinand Haider	
Dr. Robert Horny		
Contents:		
Methods of thermal analysis:		
- Differential Scanning Calorimetry: D	DSC, DTA	
- Thermo-gravimetric Analysis: TG		
- Dilatometry: DIL		
- Dynamic-mechanical Analysis: DM	Ą	
Advanced Methods:		
- Modulated Differential Scanning Ca	lorimetry: MDSC	
- Evolved Gas Analysis: EGA GCMS	, FTIR	
Learning Outcomes / Competence	s:	
The students:		
 get to know the basic principles 	s of thermal analysis	
	al processes in condensed matter ,e.g.	phase transitions and relaxation
processes (metals, polymers, o		
	plex experiments and the usage of adv	anced measurement techniques
 learn how to evaluate and anal 		
Remarks:		
Workload:		
Total: 240 h		
90 h lecture and exercise course (att		
	igh exercises / case studies (self-study))
30 h studying of course content using		
30 h studying of course content using	g provided materials (self-study)	
Conditions:		Credit Requirements:
Recommended: basic knowledge in s	solid-state physics	regular participation, oral presentation
		(10 min), written report
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module:
-	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
6	according to the examination	
-	regulations of the study program	
Parts of the Module		
	Thermel Anchusic	
Part of the Module: Method Course Mode of Instruction: lecture	e: Thermal Analysis	
Lecturers: Prof. Dr. Ferdinand Haide	51	
Language: English		

Contact Hours: 2

Part of the Module: Method Course: Thermal Analysis (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Examination Method Course: Thermal Analysis report

Module PHM-0221: Method Cou Method Course: X-ray Diffraction Tec	Irse: X-ray Diffraction Techniques	8 ECTS/LP
Version 1.0.0 Person responsible for module: Prof. PD Dr. Georg Eickerling	Dr. Wolfgang Scherer	
Contents: Subjects of the practical training and of X-ray diffraction techniques:	the accompanying lecture are the theore	tical basics and the practical application
Data collection and reduction techniq	ues	
Symmetry and space group determin	ation	
Structural refinements: • The Rietveld method • Difference Fourier synthesis Structure determination:		
Patterson methodDirect methods		
Interpretation of structural refinement	results	
Errors and Pitfalls: twinning and disor	rder	
employing X-ray diffraction techhave the skill to perform under	guidance phase-analyses and X-ray stru s-on the structure-property relationships	cture determinations
Workload: Total: 240 h 30 h studying of course content using 30 h studying of course content using 90 h studying of course content throu 90 h lecture and exercise course (atte	gliterarture (self-study) gh exercises / case studies (self-study)	
Conditions: none		
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Method Course: X-ray Diffraction Techniques

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Part of the Module: Method Course: X-ray Diffraction Techniques (Practical Course)

Mode of Instruction: laboratory course Language: German

Contact Hours: 4

Examination

Method Course: X-ray Diffraction Techniques

written exam / length of examination: 90 minutes

Module PHM-0234: 2D Materials		6 ECTS/LP
2D Materials		
Version 1.0.1 (since SoSe18)	Dr. Hubert I. Kronner	
Person responsible for module: Prof. [Jr. Hubert J. Krenner	
Contents:		
C .	to emerging new materials, such as tra	nsition metal dichalcogenides
1. Fabrication		
 Optical, electronic and vibrational Applications in advanced function 		
3. Applications in advanced function		
Learning Outcomes / Competences		
	olid state materials and their properties	
	n and nanofabrication methods for 2D r	
 Understand and explain and diff 2D materials. 	erentiate between suitable optical and	structural characterization methods for
 4. Understand and explain phonon 	properties of 2D materials	
	o quantum transport phenomena such a	as the quantum Hall effect in graphene
	ion, excitonic and spin properties of trai	
	cuss applications of 2D materials and th	-
optoelectronic, spintronics devic	es and solar energy converstion.	
Workload:		
Total: 180 h		
80 h studying of course content throug	h exercises / case studies (self-study)	
60 h lecture (attendance)		
20 h studying of course content using		
20 h studying of course content using	provided materials (self-study)	<u>.</u>
Conditions:		
recommended prerequisites: basic kno	owledge in solid-state physics and	
quantum mechanics.		
Frequency: each summer semester		
. requeries. each summer semester	Recommended Semester:	Minimal Duration of the Module:
	from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:		
	from 1. Repeat Exams Permitted: according to the examination	
Contact Hours:	from 1. Repeat Exams Permitted:	
Contact Hours: 4	from 1. Repeat Exams Permitted: according to the examination	
Contact Hours: 4 Parts of the Module	from 1. Repeat Exams Permitted: according to the examination	
Contact Hours: 4 Parts of the Module Part of the Module: 2D Materials	from 1. Repeat Exams Permitted: according to the examination	
Contact Hours: 4 Parts of the Module Part of the Module: 2D Materials Mode of Instruction: lecture	from 1. Repeat Exams Permitted: according to the examination	
Contact Hours: 4 Parts of the Module Part of the Module: 2D Materials Mode of Instruction: lecture Language: English Contact Hours: 4	from 1. Repeat Exams Permitted: according to the examination	
Contact Hours: 4 Parts of the Module Part of the Module: 2D Materials Mode of Instruction: lecture Language: English Contact Hours: 4	from 1. Repeat Exams Permitted: according to the examination	
Contact Hours: 4 Parts of the Module Part of the Module: 2D Materials Mode of Instruction: lecture Language: English Contact Hours: 4 ECTS Credits: 6 Learning Outcome:	from 1. Repeat Exams Permitted: according to the examination	
Contact Hours: 4 Parts of the Module Part of the Module: 2D Materials Mode of Instruction: lecture Language: English Contact Hours: 4 ECTS Credits: 6	from 1. Repeat Exams Permitted: according to the examination	
Contact Hours: 4 Parts of the Module Part of the Module: 2D Materials Mode of Instruction: lecture Language: English Contact Hours: 4 ECTS Credits: 6 Learning Outcome:	from 1. Repeat Exams Permitted: according to the examination	

Examination 2D Materials oral exam / length of examination: 30 minutes Examination Prerequisites: 2D Materials

Module PHM-0235: Method Cour Method Course: 2D Materials	se: 2D Materials	8 ECTS/LP
Version 1.0.1 (since SoSe18) Person responsible for module: Prof. D	or. Hubert J. Krenner	
Contents:		
 Fabrication of monolayers of 2D Characterization of the structural Modelling of selected physical pr 	, optical and vibrational properties of 2D	Materials
• • • • •	tion of fabrication of selected monolayer tion of basic characterization methods fo n methods	
Workload: Total: 240 h 90 h lecture and exercise course (atter 30 h studying of course content using J 30 h studying of course content using J 90 h studying of course content throug	provided materials (self-study) iterarture (self-study)	
Conditions: Basic knowledge of solid state physics	, optics and quantum mechancis	Credit Requirements: written report, editing time 3 weeks, max. 30 pages
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English Contact Hours: 2	2D Materials	
Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4		

Examination

Method Course: 2D Materials report Description: written report

Module PHM-0228: Symmetry concepts and their applications in solid state physics and materials science	6 ECTS/LP
Symmetry concepts and their applications in solid state physics and materials science	
Version 1.0.0 (since WS18/19) Person responsible for module: Prof. Dr. István Kézsmárki Deisenhofer, Joachim, Dr.	
Contents:	·
The topical outline of the course is as follows:	
Introduction and common examples	
o Motivating examples	
o Polar and axial vectors and tensors	
o Spatial and temporal symmetries and charge conjugation	
o Symmetries of measurable quantities and fields	
o Symmetries of physical laws (classical and quantum)	
o Conservation laws (linear and angular momentum, energy, etc.)	
o Symmetry of measurement configurations (reciprocity, etc.)	
Neumann principle	
o Linear response theory and Onsager relations	
 Applications to vector and tensor quantities: electric and magnetic dipleterior of the second second	
Symmetry allowed energy terms	
o On the level of classical free energy: Polar, nematic and magnetic or	der parameters (Landau expansion)
o On the level of Hamiltonians: Molecular vibrations, crystal field poten	tial, magnetic interactions
Symmetry of physical states	
o Spatial inversion and parity eigenstates	
o Discrete translations and the Bloch states	
Spontaneous symmetry breaking upon phase transitions (Landau theory)	
Outlook: Symmetry guides for skyrmion-host materials, multiferroic comp	ounds and axion insulators
Learning Outcomes / Competences: The course aims at providing insights into the simple use of symmetry concepts material properties without performing detailed calculations. On the same basis minimal plans for experiments using the symmetry of the studied materials or vi symmetry of materials from the output of experiments.	, it gives some guides how to make
Workload: Total: 180 h 60 h (attendance) 60 h exam preparation (self-study) 60 h studying of course content (self-study)	
Conditions: Background in basic quantum mechanics is required.	

Frequency: nach Bedarf WS und SoSe	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Symmetry concepts and their applications in solid state physics and materials science Mode of Instruction: lecture

Lecturers: Prof. Dr. István Kézsmárki Language: English

Contact Hours: 3

ECTS Credits: 6

Assigned Courses:

Symmetry concepts and their applications in solid state physics and materials science (lecture)

Examination

Symmetry concepts and their applications in solid state physics and materials science oral exam / length of examination: 30 minutes

Parts of the Module

Part of the Module: Symmetry concepts and their applications in solid state physics and materials science (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Symmetry concepts and their applications in solid state physics and materials science (Tutorial) (exercise course)

Module PHM-0223: Method Courting		8 ECTS/LF
Method Course: Tools for Scientific Co	omputing	
Version 1.0.0 (since SoSe18) Person responsible for module: Prof. [Dr. Gert-Ludwig Ingold	
	g are taught in this module and applied particular programming language, Pyth	
 numerical libraries like NumPy a visualisation of numerical results use of a version control system testing of code profiling documentation of programs 		/e work
They are able to visualize the reThe students know examples ofThe students know methods for run-time problems.The students know a distributed	ving a physical problem of some compl sults and to adequately document their numerical libraries and are able to app quality assurance like the use of unit te version control system and are able to cal experience in a collaborative project	ly them to solve scientific problems. ests. They know techniques to identify
Remarks:		
The number of students will be limited	to 12.	
Workload: Total: 240 h 60 h studying of course content (self-s 90 h (attendance) 30 h preparation of presentations (self 60 h preparation of written term paper	-study)	
Conditions: Knowledge of the programming langua taught in the module PHM-0041 "Einfü Physiker und Materialwissenschaftler"	hrung in das Programmieren für	Credit Requirements: Bestehen der Modulprüfung
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: ଚ	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		-
Part of the Module: Method Course: Mode of Instruction: lecture	Tools for Scientific Computing	
Language: English / German Contact Hours: 2		

Learning Outcome:

- The students know the numerical libraries NumPy and SciPy and selected tools for the visualization of numerical results.
- The students know fundamental techniques for the quality assurance of programs like the use of unit tests, profiling and the use of the version control system git. They are able to adequately document their code.

Contents:

- numerical libraries NumPy and SciPy
- graphics with matplotlib
- · version control system Git and workflow for Gitlab/Github
- unit tests
- profiling
- · documentation using docstrings and Sphinx

Literature:

• A. Scopatz, K. D. Huff, Effective Computation in Physics (O'Reilly, 2015)

Part of the Module: Method Course: Tools for Scientific Computing (Practical Course)

Mode of Instruction: internship

Language: English / German

Contact Hours: 4

Learning Outcome:

- The students are capable of solving a physical problem of some complexity by means of numerical techniques and to visualize the results.
- They have gained some experience in the application of methods for quality assurance of their code and are able to appropriately document their programs.
- The students are able to work in a team and know how to make use of tools like Gitlab/Github.
- The students are able to present the status of their work, to critically assess it and to accept suggestions from others.

Contents:

The tools discussed in the lecture will be applied to specific scientific problems by small teams of 2-3 students under supervision. The teams regularly inform the other teams in oral presentations on their progress, the tools employed as well as encountered problems and their solution.

Examination

Method Course: Tools for Scientific Computing

report / work period for assignment: 4 weeks

Description:

The requirement for credit points is based on a scientific programming project carried out in a small team of 2-3 students. The work will be judged on the basis of a joint final report and the contributions of the individual students as documented in the team's Gitlab project. The final report should contain an explanation of the scientific problem and its numerical implementation as well as a presentation of results. The code should be appropriately documented and tested.

Module PHM-0224: Method Cou mulation Method Course: Theoretical Concepts	rse: Theoretical Concepts and Si-	8 ECTS/LF
Version 1.0.0 Person responsible for module: Prof. I	Dr. Liviu Chioncel]
	nods (computational algorithms) for class d. The following common applications wil	
•	stic optimization, inverse problems nnection between classical and quantum ms, fermions, and boson	systems
The students are able to present	aining numerical solutions to problems to t (graphically), discuss and analyze the r formulatind and carrying out a collabora	esults
Remarks: The number of students will be limited	to 8.	
Workload: Total: 240 h 90 h preparation of presentations (self 60 h preparation of written term paper 60 h studying of course content (self-s 90 h (attendance)	s (self-study)	
Conditions: Knowledge of the programming langu taught in the modul PHM-0041. Requi in physics: Classical Mechanics (New Thermodynamics and Quantum Mech	rements to understand basic concepts ton, Lagrange), Electrodynamics,	Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Method Course: Theoretical Concepts and Simulation

Mode of Instruction: lecture

Language: English / German

Contact Hours: 2

Contents:

Concepts of classical and quantum statistical physics:

- the meaning of sampling, random variables, ergodicity
- equidistribution, pressure, temperature
- · path integrals, quantum statistics, enumeration, cluster algorithms

Literature:

- 1. Werner Krauth, Algorithms and Computations (Oxford University Press, 2006)
- 2. R. H. Landau, A Survey of Computational Physics (Princeton Univ. Press, 2010)

Part of the Module: Method Course: Theoretical Concepts and Simulation (Practical Course)

Mode of Instruction: internship

Language: English / German

Contact Hours: 4

Contents:

see above

Literature:

see above

Examination

Method Course: Theoretical Concepts and Simulation

report / work period for assignment: 4 weeks

Description:

The requirement for the credit points is based on a programming project carried out in a team of 2-3 students. The final report contains the formulation and a theoretical introduction into the problem, the numerical implementation, and the presentation of the results.

Module PHM-0225: Analog Elec	tronics for Physicists and Materi-	6 ECTS/LP
als Scientists		
Analog Electronics for Physicists and	Materials Scientists	
Version 1.0.0		,
Person responsible for module: Andre	eas Hörner	
Contents:		
1. Basics in electronic and electric	al engineering	
2. Quadrupole theory		
3. Electronic Networks		
4. Semiconductor Devices		
5. Implementation of transistors		
6. Operational amplifiers		
7. Optoelectronic Devices		
8. Measurement Devices		
Learning Outcomes / Competences	5: 5:	
The students:		
 know the basic terms, concepts 	and phenomena of electronic and electro	cal engineering for the use in the Lab,
 have skills in easy circuit design 	n, measuring and control technology, ana	log electronics,
 have expertise in independent v 	working on circuit problems. They can cal	culate and develop easy circuits.
Workload:		
Total: 180 h		
20 h studying of course content using	provided materials (self-study)	
20 h studying of course content using	literarture (self-study)	
	l literarture (self-study) gh exercises / case studies (self-study)	
80 h studying of course content throu	gh exercises / case studies (self-study)	
80 h studying of course content throu 60 h lecture and exercise course (atte	gh exercises / case studies (self-study)	
20 h studying of course content using 80 h studying of course content throu 60 h lecture and exercise course (atte Conditions: none	gh exercises / case studies (self-study)	
80 h studying of course content throu 60 h lecture and exercise course (atte Conditions: none	gh exercises / case studies (self-study)	Minimal Duration of the Module:
80 h studying of course content throu 60 h lecture and exercise course (atte Conditions:	gh exercises / case studies (self-study) endance)	Minimal Duration of the Module: 1 semester[s]
80 h studying of course content throu 60 h lecture and exercise course (atte Conditions: none	gh exercises / case studies (self-study) endance) Recommended Semester:	
80 h studying of course content throu 60 h lecture and exercise course (atte Conditions: none Frequency: each winter semester Contact Hours:	gh exercises / case studies (self-study) endance) Recommended Semester: Repeat Exams Permitted:	
80 h studying of course content throu 60 h lecture and exercise course (atte Conditions: none Frequency: each winter semester Contact Hours:	gh exercises / case studies (self-study) endance) Recommended Semester:	
80 h studying of course content throu 60 h lecture and exercise course (atte Conditions: none Frequency: each winter semester Contact Hours: 4	gh exercises / case studies (self-study) endance)	
80 h studying of course content throu 60 h lecture and exercise course (atte Conditions: none Frequency: each winter semester Contact Hours: 4 Parts of the Module	gh exercises / case studies (self-study) endance)	1 semester[s]
80 h studying of course content throu 60 h lecture and exercise course (atte Conditions: none Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro	gh exercises / case studies (self-study) endance)	1 semester[s]
80 h studying of course content throu 60 h lecture and exercise course (atte Conditions: none Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro Mode of Instruction: lecture + exercise	gh exercises / case studies (self-study) endance)	1 semester[s]
80 h studying of course content throu 60 h lecture and exercise course (atte Conditions: none Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro Mode of Instruction: lecture + exerc Lecturers: Andreas Hörner	gh exercises / case studies (self-study) endance)	1 semester[s]
80 h studying of course content throu 60 h lecture and exercise course (atte Conditions: none Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro Mode of Instruction: lecture + exerc Lecturers: Andreas Hörner Language: English	gh exercises / case studies (self-study) endance)	1 semester[s]
80 h studying of course content throu 60 h lecture and exercise course (atte Conditions: none Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro Mode of Instruction: lecture + exerc Lecturers: Andreas Hörner Language: English Contact Hours: 4	gh exercises / case studies (self-study) endance)	1 semester[s]
80 h studying of course content throu 60 h lecture and exercise course (atte Conditions: none Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro Mode of Instruction: lecture + exerc Lecturers: Andreas Hörner Language: English Contact Hours: 4 ECTS Credits: 6	gh exercises / case studies (self-study) endance)	1 semester[s]
80 h studying of course content throu 60 h lecture and exercise course (atte Conditions: none Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro Mode of Instruction: lecture + exerc Lecturers: Andreas Hörner Language: English Contact Hours: 4 ECTS Credits: 6 Learning Outcome:	gh exercises / case studies (self-study) endance)	1 semester[s]
80 h studying of course content throu 60 h lecture and exercise course (atter Conditions: none Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro Mode of Instruction: lecture + exerc Lecturers: Andreas Hörner Language: English Contact Hours: 4 ECTS Credits: 6 Learning Outcome: see module description	gh exercises / case studies (self-study) endance)	1 semester[s]
80 h studying of course content throu 60 h lecture and exercise course (atte Conditions: none Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro Mode of Instruction: lecture + exerc Lecturers: Andreas Hörner Language: English Contact Hours: 4 ECTS Credits: 6 Learning Outcome:	gh exercises / case studies (self-study) endance)	1 semester[s]
80 h studying of course content throu 60 h lecture and exercise course (atte Conditions: none Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro Mode of Instruction: lecture + exerc Lecturers: Andreas Hörner Language: English Contact Hours: 4 ECTS Credits: 6 Learning Outcome: see module description Contents:	gh exercises / case studies (self-study) endance)	1 semester[s]

Examination

Analog Electronics Analog Electronics for Physicists and Materials Scientists

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Analog Electronics for Physicists and Materials Scientists

Module PHM-0226: Digital Electro als Scientists Digital Electronics for Physicists and M	-	6 ECTS/LP
Version 1.0.0 Person responsible for module: Andrea	as Hörner	
 Contents: Boolean algebra and logic gates Digital electronics and calculation Converters (Analog – Digital, Dig Principle of digital memory and c Microprocessors and Networks 	ital – Analog)	
 have skills in easy circuit design, 	and phenomena of electronic and electric measuring and control technology and c orking on circuit problems. They develop	digital electronics,
Workload: Total: 180 h 80 h studying of course content throug 20 h studying of course content using p 20 h studying of course content using l 60 h lecture and exercise course (atter	provided materials (self-study) iterarture (self-study)	
Conditions: none		
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Digital Electronic Mode of Instruction: lecture + exercis Lecturers: Andreas Hörner Language: English Contact Hours: 4 ECTS Credits: 6 Learning Outcome: see module description	cs for Physicists and Materials Scient	ists
Contents: see module description		
Literature: see module description		
Assigned Courses:		
Digital Electronics for Physicists and	d Materials Scientists (lecture + exercis	se)

Examination

Digital Electronics Digital Electronics for Physicists and Materials Scientists

oral exam / length of examination: 30 minutes

Module PHM-0150: Method Course Matter Method Course: Spectroscopy on Cond		8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Dr. Ste	phan Krohns	
Contents: Dielectric Spectroscopy [8] • Methods • Cryo-techniques • Measurement quantities • Relaxation processes • Dielectric phenomena		
 Ferroelectric Materials [7] Mechanism of ferroelectric polaria Hysteresis loop measurements Dielectric spectroscopy 	zation	
Glassy Matter [8] • Introduction • Glassy phenomena • Dielectric spectroscopy		
 Multiferroic Materials [7] Introduction Microscopic origins of multiferroid Pyrocurrent measurements Dielectric spectroscopy 	Sity	
Learning Outcomes / Competences: The students:		none eveningd with it. Therefore they
are instructed in experimental meare trained in planning and perford data,	i dielectric spectroscopy and the phenor ethods for the investigation of the dielect rming complex experiments. They learn n experimental solid state physics, includ nework of models and theories.	tric properties of condensed matter, to evaluate and analyze the collected
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h		
Conditions: Recommended: basic knowledge in sol physics of glasses and supercooled liqu		Credit Requirements: written report on the experiments (editing time 2 weeks)
Frequency: irregular (usu. winter semester)	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Method Course: Spectroscopy on Condensed Matter

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

- N.W. Ashcroft, N.D. Mermin, Festkörperphysik (Oldenbourg)
- Ch. Kittel, Einführung in die Festkörperphysik (Oldenbourg)
- C.J.F. Böttcher, P. Bordewijk, Theory of Electric Polarization (Elsevier)
- J. R. Macdonald, Impedance Spectroscopy (Wiley)
- H. Scholze, Glas (Springer)
- S.R. Elliott, Physics of Amorphous Materials (Longman)
- R. Zallen, The Physics of Amorphous Solids (Wiley)

Assigned Courses:

Method Course: Spectroscopy on Condensed Matter (lecture)

Part of the Module: Method Course: Spectroscopy on Condensed Matter (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Spectroscopy on Condensed Matter (Practical Course) (internship)

Examination

Method Course: Spectroscopy on Condensed Matter

written exam / length of examination: 120 minutes

Examination Prerequisites:

Method Course: Spectroscopy on Condensed Matter

Module PHM-0169: Masterthesis Masterthesis		26 ECTS/LP
Version 1.0.0 (since SoSe15)		
Person responsible for module: F	rof. Dr. Dirk Volkmer	
Contents:		
According to chosen topic		
Remarks: COMPULSORY MODULE		
Workload: Total: 780 h 260 h studying of course content 520 h lecture and exercise course	using provided materials (self-study) e (attendance)	
Conditions: To begin with the Masterthesis students must have acquired 72 CP from modules consisting of the modulgroups 1a - 5.		Credit Requirements: written thesis
Recommended: according to the	respective advisor	
Frequency: each semester	Recommended Semester: from 4.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 1	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Masterthes Language: English	is	
Learning Outcome: see description of module		
Contents: see description of module		
Examination Masterthesis Master's thesis		

Examination Prerequisites:

Masterthesis

Module PHM-0170: Colloquium Colloquium		4 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: P	rof. Dr. Dirk Volkmer	
Contents: According to the respective Maste	erthesis	
Remarks: COMPULSORY MODULE		
Workload: Total: 120 h 40 h studying of course content u 80 h lecture and exercise course	sing provided materials (self-study) (attendance)	
Conditions: submission of the masterthesis		
Frequency: each semester	Recommended Semester: from 4.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 1	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Colloquium Language: English		
Learning Outcome: see description of module		
Contents: see description of module		
Examination Colloquium seminar / length of examination Examination Prerequisites:	on: 20 minutes	